אסטרונומיה

מתוך המכלול, האנציקלופדיה היהודית
גרסה מ־03:18, 2 בספטמבר 2019 מאת דויד (שיחה | תרומות) (החלפת טקסט – " מאוד " ב־" מאד ")
קפיצה לניווט קפיצה לחיפוש
Incomplete-document-purple.svg
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.
המכתש הגדול דדלוס בצד הרחוק של הירח שצולם על ידי צוות אפולו 11. זו דוגמה לתצפית אסטרונומית שהתאפשרה בזכות שיגורן של חלליות

אַסְטְרוֹנוֹמִיָהיוונית: הלחם של המילים άστρον, אסטרון - כוכב, ו-νόμος, נומוס - חוק) היא ענף במדעי הטבע החוקר באמצעות תצפיות וניתוחן את התנועה, מבנה, ההתהוות וההתפתחות של גרמי השמים והיקום.

לאסטרונומיה הייתה השפעה גדולה לאורך השנים על תרבויות, אמונות ותפישות מדעיות. נמצאו ממצאים מרשימים עוד מהתקופה הפרהיסטורית המעידים על מרכזיות האסטרונומיה בחברות פרהיסטוריות. אמונות רבות העמידו במרכז האמונה היבטים אסטרונומיים, דוגמה לכך היא הפילוסופיה של אריסטו. במהפכות מדעיות רבות שימשה האסטרונומיה בסיס מרכזי, אחת מהבולטות שבהן היא תורת היחסות.

ייחוד נוסף של המדע האסטרונומי הוא תרומתם של אסטרונומים חובבים לחקר האסטרונומיה. תרומתם של האסטרונומים החובבים ניכרת בעיקר בגילוי אירועים חד פעמיים כמו סופרנובות, שביטים, אסטרואידים וכוכבים משתנים. עם התפתחות האינטרנט אסטרונומים חובבים מסייעים גם בנתוח תצפיות בפרויקטים כדוגמת Galaxy Zoo.

עוד מאפיין ייחודי לאסטרונומיה הוא שבניגוד לשאר המדעים, האסטרונומיה כמעט אינה עוסקת בניסויים אלא בתצפיות. כמעט כל המחקר האסטרונומי נעשה באמצעות צפייה וניתוח של הספקטרום האלקטרומגנטי. יוצא מן הכלל הוא מחקר הירח, המאדים ומספר אסטרואידים שנעשה גם באמצעות דגימות קרקע.

הגדרה

אסטרונומיה היא שם כולל לכל מדעי החלל שעוסקים בתיאור גרמי השמים והיקום, הילוכם, מיקומם, הפיזיקה שלהם ויחסי הגומלין ביניהם. תחומים עיקריים שנכללים באסטרונומיה הם:

עד לתקופת פריחת הפילוסופיה והמדע ביוון הקלאסית, העיסוק היה באסטרומטריה בלבד. העיסוק בקוסמוגוניה וקוסמולוגיה היה בממד המיתי בלבד ואין כל תעוד לניסיון למצוא מודל שיסביר את התצפיות. הפילוסופים היוונים ניסו לראשונה לתת הסבר למוצא היקום (קוסמוגוניה) ולמבנהו העכשווי (קוסמולוגיה). עם פרוץ המהפכה המדעית נוסדה גם הפיזיקה המודרנית ואיתה גם נולד תחום האסטרופיזיקה.

מתחילת המאה ה-20 כל תחומי המחקר האסטרונומי הם, למעשה, ענפים של אסטרופיזיקה. יש המשתמשים במונחים אסטרונומיה ואסטרופיזיקה כמונחים מקבילים אחד לשני, ויש המשתמשים במונח אסטרונומיה לתיאור החלק התצפיתי ואילו במונח אסטרופיזיקה לחלק העיוני (ראו גם בערך אסטרופיזיקה הרחבה בנושא, ודוגמאות לאסטרופיזיקה תצפיתית מול אסטרופיזיקה עיונית).

היסטוריה

זריחת השמש מעל סטונהנג' ביום ההיפוך הקייצי

האסטרונומיה היא, ככל הנראה, המדע העתיק ביותר. כבר תרבויות פרימיטיביות שמו לב לתופעות אסטרונומיות בסיסיות; זריחה ושקיעה, מופעי הירח, נטיית מסלול השמש בעונות השנה, השפעת נטיית השמש על אורך היום והלילה ומזג האוויר, תנועת כוכבי הלכת וסידור כוכבי השבת. הבנת תופעות אלו הייתה חשובה במעבר לחברה חקלאית, על פי התופעות האסטרונומיות יכלו בני האדם לדעת מתי לחרוש ומתי לזרוע. ישנם גם ממצאים ארכאולוגים המתעדים אירועים נדירים יותר כגון שביטים, ליקוי מאורות ואף נובות וסופר נובות. אם כי לרוב ממצאים אלו אינם מוחלטים.

אסטרונומיה קדומה

איננו יודעים מתי החל חקר האסטרונומיה המסודר ומתי פעל האסטרונום הראשון, אולם ישנן עדויות ארכאולוגיות ברורות לעיסוק רציני באסטרונומיה ברמה גבוהה בתרבויות העתיקות ביותר. נמצאו עדויות לעיסוק באסטרונומיה מתקופת הפריחה של שומר, וידוע גם שהמצרים הקדמונים עסקו בה. ממצא מרשים הוא סטונהנג' שבאנגליה (נבנה במהלך האלף השלישי לפנה"ס). החוקרים חלוקים האם האתר שימש כמצפה כוכבים או לשימוש אחר, אך מוסכם על כולם שהאבנים מוקמו על פי אירועים אסטרונומיים. עמודי האבן ממוקמים כך שניתן לחשב בעזרתם אירועים אסטרונומים כגון נקודת השוויון ונקודת היפוך נקודות במסלולו של הירח ועוד. עד ל פילוסופים היוונים ביוון הקלאסית שימשה האסטרונומיה הן כמדע תצפיתי (שסייע למשל לקבוע את לוח השנה) והן כבסיס לאסטרולוגיה שנחשבה אז חלק בלתי נפרד ממנה. גם כתבים אסטרונומיים מימיה האחרונים של ממלכת בבל, מן המאה השלישית או השנייה לפני הספירה, כוללים נתונים מספריים תצפיתיים, ללא רמז למודל שיוכל להסביר את התצפיות. ממצאים המעידים על תצפיות שיטתיות נמצאו במצרים, הודו, סין ומסופוטמיה. בכל המקומות הללו נעשו חישובים שחזו אירועים אסטרונומיים כגון ליקויים.

אסטרונומיה מסופוטמית

חוקרים שבדקו את קבוצות הכוכבים המקובלות בעולם העתיק, והשוו זאת לכוכבים הנראים בקווי רוחב שונים בתקופות שונות, שערו כי החלוקה הראשונית של כוכבים בהירים לקבוצות נעשתה לראשונה לפני כ-4,800 שנה באזור קו רוחב 40°. יש יסוד לדבר שהחלוקה נעשתה בארם נהריים.

הלוח הבבלי (שמבוסס על לוח שומרי) מבוסס על מחזור ה"סארוס"- מחזור של ליקוי חמה (או לבנה) של 18 שנים ו-11 יום שהם 223 חודשים סינודים (הפרש בין מולד ירח אחד למשנהו). מחזור זה מאפשר קביעת לוח שמסנכרן חודשי ירח ושנות חמה ומעיד על לוחות תצפית מדויקים לאורך שנים רבות. מחזור זה היווה, ככל הנראה, בסיס למחזור המטוני של מטון ולחישוביו של תאלס איש מילטוס. גם הלוח העברי בנוי על יסוד חישובים אלו. נמצאו לוחות תצפית שמפרטים את מיקומי השמש, הירח, כוכבי הלכת, ליקויים, נקודות היפוך, ולעיתים אף את זריחתו של סיריוס. הלוחות מתוארכים מסוף המאה השביעית לפסה"נ ועד למאה הראשונה לפסה"נ. הבבלים המציאו את גלגל המזלות המוכר וקבעו את תחילתו באלדברן שהיה אז בנקודת השוויון האביבי.

לאסטרולוגיה היה חלק חשוב בפיתוח האסטרונומיה הבבלית. היו להם אלילים לכל כוכבי הלכת ואל לשמיים ולכוכבים. מצפי הכוכבים מוקמו כחלק מהמקדשים, וכהני הדת היו מנסים לחזות אירועים חשובים כמו עליית ונפילת מלכים.

בסביבות המאה ה-5 לפסה"נ חישבו הבבלים ברמת דיוק מפליאה את אורך החודש הסינודי הממוצע- 29.530614 או 29.530594 יום לעומת הזמן המדויק שעמד על 29.530583 באותה התקופה. גם את אורך השנה הטרופית חשבו הבבלים כ-365.234 במקום 365.2422. רמת דיוק זו מפליאה בייחוד בהתחשב במכשירי המדידה הלא מדויקים שהיו באותה תקופה.

אסטרונומיה מצרית

האסטרונומיה המצרית לא הגיעה, ככל הנראה, לאותה רמת התפתחות של זאת הבבלית, אך הייתה גם היא מפותחת מאד. המצרים ידעו בשלב מוקדם למדי את ההבדל בין אורך של שנת חמה (365.25 יום) לבין הלוח המצרי (365 יום). המצרים חישבו מחזור גדול שבו 1,461 שנים שלהם שוות ל-1,460 שנות חמה. על פי החישוב מחזורים גדולים כאלה התחילו בשנים 4,241, 2,781 ו-1,321 לפסה"נ. אין ראיות ברורות מתי התחיל הלוח, אבל ישנם כמה חוקרים שסבורים שהתאריך הראשון היה תחילת הלוח. אם השערה זו נכונה הרי שמדובר בתאריך הקדום ביותר הידוע של כרונולוגיה היסטורית. בבניית הפירמידות במצרים ניכרים הישגיהם של המצרים באסטרונומיה. הן בכיוון המדויק לרוחות השמיים והן בכיוון אלמנטים שונים לאירועים אסטרונומיים כמו עמדות כוכבים בעונות השנה.

אסטרונומיה ביוון

רישומים ותצפיות של גלילאו על הירח גילו שפני שטחו הרריים

ממסופוטמיה עברה גחלת האסטרונומיה לעולם ההלניסטי, שבו מוקד העיסוק השתנה מאירועים כגון ליקויי חמה ולבנה והפקת לוחות שנה למיפוי כיפת השמים ויצירת קטלוגים ותאוריות. כתבים המיוחסים לאסטרונום אאודוקסוס מקנידוס, מן המאה הרביעית לפני הספירה, כוללים מודל גיאוצנטרי, לפיו כדור הארץ היה במרכז וסביבו סבו השמים כולם. אצל אוודוקסוס, כל כוכב לכת נע כאילו הוא משובץ בכדור גדול שמרכזו מתלכד עם מרכז כדור הארץ, בעוד שהכדור סב על צירו. כדי להסביר את הנתונים האסטרונומיים, אוודוקסוס נאלץ להניח שציר הסיבוב עצמו אינו קבוע, אלא נוקף במעגל קטן כמו ציר הסיבוב של סביבון.

בתקופה הרומאית חל קפאון באסטרונומיה, שבתקופה זו עיקר תפקידה היה ביישומה המעשי (לדעת מאמיניה באותה תקופה), האסטרולוגיה. ברבע השני של המאה השנייה לפני הספירה ערך היפרכוס קטלוג שכלל כ- 1000 כוכבים, והצביע על אי-דיוקים במודלים האסטרונומיים של מערכת השמש שהיו מקובלים בתקופתו. מעט מאוחר יותר התקין יוליוס קיסר, המנהיג הרומאי החשוב, לוח אחיד באימפריה הרומית, הוא הלוח היוליאני.

במאה השנייה לספירה גיבש תלמי את המודל הגיאוצנטרי, שמשל בכיפה עד לימי גלילאו. לאחר נפילת האימפריה הרומית עבר לפיד האסטרונומיה לערבים (עם עליית האסלאם) ולהודים ולסינים שקיבלו אותה דרך דרך המשי. בעוד ההודים והסינים, שעסקו באסטרונומיה עוד לפני זאת, לא פיתחו את האסטרונומיה במיוחד בתקופה זו, הערבים, שעד עליית האסלאם היו עם מפגר אחרי העמים שבסביבתו, החלו בתקופה זו במחקר אסטרונומי רב כפי שלא נראה עד אותה תקופה, ועד היום רוב הכוכבים שלהם שם שאינו תחת מערכת מתן שמות מסודרת - שמם ערבי. בבוא הרנסאנס התפתחה רבות האסטרונומיה באיטליה, ומשם עברה לשאר אירופה הנוצרית. תגליותיהם של גלילאו גליליי וניקולאוס קופרניקוס, ויותר מכל - של יוהנס קפלר פתחו את הצוהר לתאוריה החדשה של האסטרונומיה: התאוריה ההליוצנטרית לפיה השמש במרכז היקום וכדור הארץ ושאר גרמי השמים סבים סביבה. באותה תקופה הומצא גם ידידו הטוב ביותר של האסטרונום: הטלסקופ. הטלסקופ עד ימינו הוא הכלי החשוב ביותר באסטרונומיה. המצאת הטלסקופ עזרה לגילוי המוני כוכבים, ועזרה לאין ערוך לקידום מדעים אחרים. במאה ה-19 התגלתה הספקטרוסקופיה שאיפשרה לגלות את הרכבם הכימי של הכוכבים. במאה ה-20 החלו המדענים לחקור גם תחומים שאינם האור הנראה בספקטרום האלקטרומגנטי, כמו גלי רדיו וקרני X. כאמור, בעבר היו מקובלים המודל הגיאוצנטרי ואחריו המודל ההליוצנטרי. נסקור בהמשך את המודלים הללו, את תולדותיהן, ואת האמונה הרווחת כיום.

אסטרונומיה של בני המאיה

Postscript-viewer-blue.svg ערך מורחב – לוח השנה של המאיה

מכל העולם העתיק, אלו שתוצאותיהם הכי מדויקות - ובהפרש משמעותי משל שאר בני זמנם - הם בני המאיה, מהמאה החמישית לפני הספירה.

אורך השנה הטרופית ע"פ חשבונם מדויק מאד - הרבה יותר משל היוונים (סטיה של 18 שניות לשנה בלבד), אורך מחזור הירח די מדויק - 29 יום 12 שעות 44 דקות 1/3 26 שניות. אורך מחזור נוגה מדויק מאוד: 584 יום (היום ידוע לנו: 583.92). כמו כן הם היחידים שגילו - לפני המצאת הטלסקופ - שערפילית אוריון (כסיל) היא מטושטשת ויש בה כוכבים מפוזרים ולא נקודה בודדת. גם הם חישבו את זמני ליקויי החמה והלבנה.

המודל הגאוצנטרי

מערכת שמש גאוצנטרית
Postscript-viewer-blue.svg ערך מורחב – המודל הגאוצנטרי

מקור השם גאוצנטרי הוא ביוונית: גאו=ארץ וצנטרון=מרכז. ניתן להבין מכך שמשמעות השם המודל הגאוצנטרי היא ההשקפה לפיה כדור הארץ במרכז, הוא מרכז היקום לפי מודל זה, כלומר: השמש, הירח, הכוכבים וכוכבי הלכת סובבים את כדור הארץ. לאחר גילוי צורתו הכמעט-כדורית של העולם על ידי היוונים נוצר מודל זה. מודל זה היה נפוץ בעולם ההלניסטי ורעיונות דומים לו היו נפוצים בשאר העולם (הודו העתיקה, סין העתיקה).

לפי המודל הגאוצנטרי 55 ספירות (Spheres) בדולח הכילו את השמש הכוכבים וכוכבי הלכת. עם זאת כיפת השמים לא צייתה למודל זה. כוכבי הלכת התנהגו בדרכים מוזרות: נעו קדימה ואחורה בצורה שנראתה בלתי צפויה. כדי להסביר זאת אריסטו טען שכוכבי הלכת נעים לא בדיוק לפי סיבוב הספירות אלא גם לפי סיבוב של ספירות קטנות יותר על הספירות: אפיציקלים. תלמי העמיק במדידותיו את המודל עם אפיציקלים על-גבי אפיציקלים בכמויות מרובות. הוא גם שינה את המרכז שסביבו סובבים הכוכבים מכדור הארץ לנקודה קרובה לו.

המודל הגאוצנטרי שרד עד המאה השש-עשרה והוחלף בהדרגה במודל ההליוצנטרי של קופרניקוס, גלילאו וקפלר.

המודל ההליוצנטרי

מערכת שמש הליוצנטרית
Postscript-viewer-blue.svg ערך מורחב – המודל ההליוצנטרי

מקור השם הליוצנטרי ביוונית הוא הליוס (בעברית: שמש) וצנטרון, כלומר ההשקפה לפיה השמש במרכז. המודל נוגד האינטואיציה (הרי כשמסתכלים לשמי הלילה רואים את הכוכבים נעים) היה מוכר כבר ליוונים והועלה על ידי הפיתגוראים, אריסטרכוס, אבל רק במאות השש-עשרה והשבע עשרה המודל הועלה מחדש במערב על ידי קופרניקוס וגלילאו, וזכה לניצחון בעזרת קפלר. מודל הליוצנטרי הוצע גם במאה החמישית בהודו על ידי האסטרונום ההודי אריבהאטה. המודל ההליוצנטרי התפתח בהדרגה באירופה: תחילה הופיעו המודלים של קופרניקוס וגלילאו שבהם כל מערכת השמש פרט לירח סובבת סביב השמש, לאחר זמן חלה נסיגה קלה והופיע המודל של טיכו ברהה לפיו השמש והירח מקיפים את כדור הארץ ושאר מערכת השמש מקיפה את השמש. בשני מודלים אלו תנועת ההקפה הייתה מעגלית לחלוטין, ולכן עדיין נדרשו המוני אפיציקלים כדי לתאום את המציאות. לאחר מכן הגיע המודל של קפלר, שבו התנועה הייתה אליפטית ולכן התצפיות היו תואמות אפילו יותר משל המודל הגאוצנטרי והמודל אומץ, כשהכנסייה קיבלה אותו משראתה זאת.

תגליות מרכזיות

ביהדות

על פי היהדות, ישנה מצווה לחשב תקופות ומזלות[2], דהיינו לעסוק בחישובים אסטרונומיים ("מזל" בארמית פירושו כוכב), מה גם שההלכה זקוקה לחישובים כאלה להלכות מסוימות, כגון קידוש החודש, עיבור השנה, דיני ארבע התקופות ועוד. ואכן רבים מחכמי ישראל עסקו במדע זה: לרבן גמליאל היו טבלאות עם איורי הירח בגדלים שונים[3], האמורא שמואל העיד על עצמו שהוא בקי בשבילי הרקיע כמו שבילי נהרדעא (שם עירו)[4] ואף הרמב"ם הסביר באריכות את מסלולי השמש והירח (משנה תורה, ספר זמנים, הלכות קידוש החודש). בתלמוד מובאים כללים אסטרונומיים בסיסיים, כגון: מעולם לא ראתה חמה פגימתה של לבנה[5], כלומר, החלק החשוך של הירח (להבדיל מהצד ההפוך של הירח) לעולם לא יפנה לכיוון השמש (מכיוון שהשמש היא זאת שמאירה את הירח), אורך שנת החמה הוא 365 יום ורבע (על פי ערובין נ"ה ע"א), שנת החמה ארוכה באחד עשר יום משנת הלבנה ועוד.

זמן המולד הממוצע (החודש הסינודי) מופיע בגמרא כ- כ"ט י"ב תשצ"ג, כלומר 29 יום 12 שעות -793/1080 של שעה, שהוא 29.5305941358025, סטיה של כחצי שנייה (או מעט פחות) לכל חודש, שהוא דיוק מכובד. אם משקללים את האטת סיבוב הירח וכן את האטת סיבוב כדור הארץ במשך ה-2000 שנה האחרונות, הסטיה קטנה באופן משמעותי, עד ל-0.15 שניות. (גם סטייה זו עצמה מוסברת בכך שהממוצע התלמודי הינו כללי של כל החודשים שבימות עולם, בעוד הממוצע הנמדד היום הינו של מספר חודשים מסויים ואינו מוחלט.) מספר זהה היה ידוע לכשדים מימי קידינו (המאה הרביעית לפני הספירה) וליוונים מהיפרכוס (המאה השנייה לפני הספירה).

תצפיות אסטרונומיות

גרף המתאר את כמות הקרינה של אורכי הגל השונים הנחסמת באטמוספירה

מידע תצפיתי באסטרונומיה נאסף בכל תחומי הספקטרום האלקטרומגנטי, מגלי רדיו דרך הספקטרום הנראה ועד לקרינת גמא. צפייה בטווחים שונים של הספקטרום נדרשת כדי לקבל תמונה רחבה של היקום. רוב גרמי השמים פולטים קרינה רק בחלקים מסוימים מטווח הספקטרום האלקטרומגנטי בגלל תהליכים פיזיקליים שונים. ניתוח ספקטרום בליעה וספקטרום פליטה של גרמי שמים נותן מידע רב על תכונותיהם הפיזיקליות כגון טמפרטורה, הרכב, מהירות, עוצמת שדה מגנטי ועוד.

ייחוד נוסף לשימוש בתחומים שונים של הספקטרום הוא התגברות על תהליכים פיזיקליים הגורמים לשינויים בספקטרום הנמדד ביחס לנפלט. לדוגמה, אפקט דופלר של קוואזרים מסוגל לגרום להזזה של קווים מתחום העל סגול לתת אדום. דוגמה נוספת היא חקר אזורים מוסתרים בתחום הנראה, כגון ערפיליות יצירה או ליבת גלקסיית שביל החלב. פיזור האור על ידי ענני אבק בין-כוכבי משפיע בעיקר על אורכי גל קצרים ולכן אפשר לצפות אל ליבת הגלקסיה רק באמצעות טלסקופי רדיו ותת אדום ולא באור הנראה.

אורכי הגל השונים של הספקטרום האלקטרומגנטי מצריכים אמצעי תצפית שונים, בעלי ייחודים שונים בעיצובם בבחירת החומרים ובמבנה שלהם. חלקים נרחבים מהתחומים הלא נראים של הספקטרום נחסמים בשכבות שונות של האטמוספירה וכדי למדוד אותם צריך להשתמש באמצעי תעופה שונים, החל מכדורים פורחים וכלה בחלליות.

להלן יפורטו שיטות התצפית באורכי הגל השונים.

הספקטרום הנראה

קרינת הרקע הקוסמית - תצפיות מיקרוגל

קרינת הרקע הקוסמית באורכי גל שבין 1-2 מ"מ (150-300 גיגה-הרץ) היא קרינה המגיעה מן החלל והיא כמעט אחידה מכל הכוונים. קרינת הרקע מספקת מידע רב מאד על ראשית היקום, והיא אחת העדויות הראשיות למפץ הגדול. התצפיות מתבצעות מלוויינים, מטלסקופים שמוטסים על גבי כדורים פורחים ומטלסקופים קרקעיים הממוקמים על פסגות הרים ומקומות ייחודיים נוספים. התאוריה המקובלת על מקור קרינת הרקע הוא כי הקרינה מתארת את הרגע שבו היונים החיוביים והשליליים התחברו והפכו לאטומים נייטרליים, אז היקום הפך לשקוף לכל סוגי הקרינה האלקטרומגנטית, ולפני כן היה עשוי פלסמה שאינה מאפשרת מעבר אור. ההבדלים המזעריים בקרינה מכל כוון מספקים את התמונה של היקום כפי שהיה בעת ההיא, כ-380 אלף שנה לאחר המפץ הגדול. התצפיות מנסות למפות את התפלגות הקרינה באופן המדויק ביותר, בכל הכוונים בשמיים. המיפוי המקיף והמדויק ביותר נכון לשנת 2012 הוא של לוויין המחקר WMAP, כאשר לוויין המחקר פלאנק (Planck Surveyor) ביצע מיפוי מדויק יותר. תצפיות קרקעיות מוסיפות מידע נוסף, למשל מפה של קיטוב הקרינה.

אורכי גל הקצרים מהתחום הנראה

תצפיות באורכי הגל הקצרים: על-סגול, קרני רנטגן וקרני גמא מתבצעת כולה מאזורים גבוהים באטמוספירה או מהחלל משום שתחום קרינה זה נבלע באופן חזק ביותר באטמוספירה. כוכבים מסוימים מאירים גם בחלקים של האור העל סגול והרנטגן, אך תרומתם למראה היקום באורכי גל קצרים קטנה מאד. תצפיות בתחומים אלו כוללות בעיקר תהליכים פיזיקליים אלימים הקשורים ללידה ומוות של כוכבים ואזורים פעילים בליבות גלקסיות. תצפיות בתחום הרנטגן הן של גופים בעלי טמפרטורה אופיינית של מליון עד מאות מיליוני מעלות קלווין, כגון עצמים קומפקטיים ככוכבי ניוטורונים או חומר בדיסקת ספיחה של חורים שחורים (אם כי החורים השחורים עצמם אינם מאירים כלל). מאז שנות ה-40 של המאה ה-20 ידוע כי גם השמש מאירה בעל סגול וברנטגן אך בצורה חלשה משמעותית מההארה בתחום האור הנראה. תצפיות בתחום קרינת הגמא בדומה לקרינת הרנטגן כוללות אירועים אלימים כסופרנובות, יצירת חורים שחורים וכן דעיכה של געינים כבדים. מתפרצי קרינת גמא הם האירועים האנרגטיים ביותר הידועים לנו כיום, משך שיא ההתפרצות עומד על עשרות שניות בודדות אך בזמן זה משתחררת כמות אנרגיה השווה לזו שתאיר השמש במשך כל חייה.

האסטרונומיה בימינו

תמונה של ערפילית הסרטן כפי שצולמה על ידי טלסקופ החלל האבל

האסטרונומיה המודרנית עוסקת בשלושה תחומים עיקריים, השלובים זה בזה:

האסטרונומים משתמשים במגוון שיטות, בראש וראשונה תצפיות בטלסקופים אופטיים ורדיו-טלסקופים המותקנים במצפים שונים ברחבי העולם או על לוויינים המיוחדים לכך. על גופים במערכת השמש לומדים גם מצילומם מקרוב באמצעות לוויינים.

בשנים האחרונות החלה להתפתח גם אסטרונומיה שאיננה בעזרת קרינה אלקטרומגנטית - אסטרונומית נייטרינו, אסטרונומית קרינה קוסמית ואסטרונומית גלי כבידה, תחומים אלו נמצאים בתחילתם ומרבית הידע האסטרונומי מגיע מקרינה אלקטרומגנטית.

אסטרונומיה על פי נושאים ובעיות

ישנם תחומים נוספים שיכולים להחשב כחלק מאסטרונומיה:

ראו גם

עיינו גם בפורטל

Q space.svg

פורטל מדעי החלל הוא שער לכל הערכים והנושאים הקשורים במדעי החלל. הפורטל מציג את תחומי מדעי החלל השונים, ביניהם: אסטרונומיה, אסטרופיזיקה, קוסמולוגיה, אישים שעסקו בתחום, ועוד.

לקריאה נוספת

  • יואל שילה, היא חכמתכם - האסטרונומיה בהלכה, תשע"ד.
  • מייקל הוסקין (עורך), היסטוריה של האסטרונומיה: מהפרה-היסטוריה עד ימינו, תרגום והערות: ד"ר יקי מנשנפרוינד, עריכה מדעית: ד"ר שאול קציר, הוצאת רסלינג, 2012.
  • יגאל פת- אל, אסטרונומיה- מדריך להכרת השמיים, הוצאת קוסמוס טלסקופים, 1998, (מהדורה רביעית: 2011).
  • פליקס דותן, אל הכוכבים – מאטומים עד חורים שחוריםהוצאת מאגנס, 2001.

קישורים חיצוניים

הערות שוליים

Logo hamichlol 3.png
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0