אקסיומות ההפרדה

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף אקסיומות הפרדה)
קפיצה לניווט קפיצה לחיפוש

אקסיומות ההפרדה (נקראות גם "תכונות ההפרדה") הן תכונות של מרחב טופולוגי, הקשורות ביכולת של הטופולוגיה להפריד בין נקודות או קבוצות שונות במרחב. ישנן כתריסר אקסיומות שונות, שהחשובה שבהן היא תכונת האוסדורף, הקרויה גם תכונת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_2} . לכמה מתכונות ההפרדה המרכזיות משתמשים בסימון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_n} , עבור ערכים שונים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} . מקורה של האות T בהקשר זה הוא במלה הגרמנית Trennung, שפירושה "הפרדה".

מרחבים מטריים מקיימים את כל אקסיומות ההפרדה, ולכן אפשר לראות באקסיומות ההפרדה מעין היררכיה של מרחבים טופולוגיים, המודדת עד כמה דומה מרחב נתון (מבחינת יכולת ההפרדה שלו) למרחב מטרי.

המינוח הקשור באקסיומות ההפרדה נודע כמינוח לא אחיד: בספרים שונים השתמשו באותם שמות כדי לתאר תכונות שונות, ולכן כשמצטטים תוצאות בתחום זה, חשוב לברר באיזו הגדרה השתמש המחבר. נקודת המוצא היא האקסיומה הקרויה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} , שהיא דרישה פרימיטיבית באופן יחסי (כלומר, רוב המרחבים הטופולוגיים המופיעים בספרות, מקיימים אותה). בוויקיפדיה אנו מאמצים את הגישה המודרנית יותר, לפיה התכונות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_3, T_4} ונגזרותיהן מכילות את ההנחה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} כחלק מההגדרה, בעוד שמרחבים רגולריים ומרחבים נורמליים, על הווריאציות של תכונות אלה (ראו בהמשך), אינם נדרשים לקיים את התכונה הזו. בעבר, ובפרט בספר החשוב "Counterexamples in Topology" (שכתבו Steen ו- Seebach ב- 1970), היה מקובל היפוך של המונחים.

אקסיומות ההפרדה

קובץ:Separation axioms illustrated.png
המחשה של אקסיומות ההפרדה. נקודה שחורה מסמלת נקודה במרחב, תחום כחול מסמל קבוצה פתוחה ומלבן אדום מסמל קבוצה סגורה.

ישנן שתי תכונות בסיסיות שמקובל למנות בין אקסיומות ההפרדה, אף על פי שבעצם אינן כאלה. הראשונה היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} :

  • מרחב טופולוגי מקיים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} , אם לכל שתי נקודות שונות, קיימת קבוצה פתוחה המכילה אחת מהן אבל לא את השנייה. במילים אחרות, לא קיימות שתי נקודות שיש להן בדיוק אותן סביבות.

במרחב שאינו מקיים דרישה זו, ישנם זוגות של נקודות שאי אפשר להבחין ביניהן במשקפי הטופולוגיה.

התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} היא תכונה מעט חזקה יותר, מעין גרסה סימטרית של התכונה הקודמת:

  • מרחב טופולוגי מקיים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , אם לכל שתי נקודות שונות, קיימת קבוצה פתוחה המכילה את זו ולא את זו, וכן להפך.

תכונה זו שקולה לכך שכל יחידון מהווה קבוצה סגורה. כל מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} הוא בפרט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} .

הפרדה בין נקודות

כדי להציג את אקסיומות ההפרדה השונות, נפתח בכמה דוגמאות.

  • מרחב האוסדורף, או מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{2}} , שהוזכר קודם לכן, הוא מרחב טופולוגי, המקיים את הדרישה הבאה:
לכל שתי נקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p \neq q} , קיימות קבוצות פתוחות וזרות, שאחת מהן מכילה את p, והשנייה את q.

לתכונה זו קוראים "הפרדה בין נקודות על ידי קבוצות פתוחות", כאשר ה"הפרדה" פירושה שאפשר מתוך התבוננות בקבוצות הפתוחות להיווכח בכך שהנקודות שונות זו מזו (שהרי הקבוצות זרות).

אפשר לבחון תכונת הפרדה חזקה יותר, באמצעות סביבות סגורות:

  • מרחב אוריסון, או מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{2\frac{1}{2}}} , הוא מרחב טופולוגי, המקיים את הדרישה כי לכל שתי נקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p \neq q} , קיימות סביבות סגורות וזרות, שאחת מהן מכילה את p, והשנייה את q.

נזכיר שסביבה של נקודה היא קבוצה שהנקודה נמצאת בפנים שלה; בפרט, סביבה מכילה קבוצה פתוחה, המכילה את הנקודה שלנו. ממילא ברור שהפרדה באמצעות סביבות סגורות היא תכונה חזקה יותר מהפרדה באמצעות קבוצות פתוחות.

יש תכונת הפרדה חזקה עוד יותר - באמצעות פונקציות רציפות.

  • מרחב האוסדורף לחלוטין (completely Hausdorff), הוא מרחב טופולוגי X, המקיים את הדרישה: לכל שתי נקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p \neq q} , קיימת פונקציה רציפה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f : X \rightarrow [0,1]} , כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(p)=0} ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(q)=1} .

זוהי בוודאי הפרדה חזקה יותר מאשר באמצעות סביבות סגורות, משום שאת הנקודות 0 ו- 1 אפשר להפריד בסביבות סגורות על הישר הממשי, והמקורות של סביבות סגורות במרחב X (תחת פונקציה רציפה) הם סביבות סגורות.

אם כן, פגשנו שלוש רמות של הפרדה: הפרדה בקבוצות פתוחות (וזרות), הפרדה בסביבות סגורות (וזרות), והפרדה בפונקציה רציפה. בכל המקרים מדובר היה בהפרדה בין זוג נקודות. בהמשך נראה שיש סוג נוסף של הפרדה: הפרדה מדויקת באמצעות פונקציה (רציפה).

הפרדה בין קבוצה סגורה לנקודה

  • מרחב שבו אפשר להפריד בין קבוצה סגורה לנקודה (שאינה שייכת לקבוצה) באמצעות קבוצות פתוחות, נקרא מרחב רגולרי.

לא קשה להוכיח שבמקרה כזה, אפשר להפריד בין קבוצה סגורה לנקודה גם באופן החזק יותר של סביבות סגורות.

  • מרחב שבו אפשר להפריד קבוצה סגורה ונקודה באמצעות פונקציה רציפה נקרא מרחב רגולרי לחלוטין. כמקודם, מרחב רגולרי לחלוטין הוא בפרט רגולרי.

במרחב טופולוגי כללי, נקודה אינה בהכרח קבוצה סגורה, ולכן היכולת להפריד קבוצות סגורות ונקודות אינה מלמדת אותנו על היכולת להפריד בין נקודות שונות. לעומת זאת, אם מוסיפים את ההנחה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , מופיע קשר בין התכונות החדשות לתכונות שראינו קודם לכן:

  • מרחב רגולרי שהוא גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} נקרא מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_3} .

כל מרחב כזה מקיים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_2} , ולכן הם נקראים גם 'מרחבי האוסדורף רגולריים'. אפשר לראות שכל מרחב רגולרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} מקיים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , ולכן הוא מהווה מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_3} .

  • מרחב רגולרי לחלוטין שהוא גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} נקרא מרחב טיכונוף, או מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{3\frac{1}{2}}} .

גם כאן, מרחב רגולרי לחלוטין שהוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} מקיים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , ולכן הוא מהווה מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{3\frac{1}{2}}} . כל מרחב כזה הוא בפרט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_3} .

הפרדה בין קבוצות סגורות

  • מרחב שבו אפשר להפריד בין שתי קבוצות סגורות וזרות באמצעות קבוצות פתוחות, נקרא מרחב נורמלי.

הלמה של אוריסון קובעת שבמרחב כזה, אפשר להפריד בין שתי קבוצות סגורות וזרות גם באמצעות פונקציה רציפה - ולכן שלוש הרמות הראשונות של הפרדה מתלכדות. בדרך כלל הפרדה זו אינה הפרדה מדויקת (מושג שיוגדר בהמשך).

  • מרחב נורמלי המקיים בנוסף את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , נקרא מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} .

כל מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} הוא בפרט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{3\frac{1}{2}}} (מרחב טיכונוף).

תכונות הפרדה חזקות

במרחב נורמלי, כפי שציינו לעיל, אפשר להפריד בין כל שתי קבוצות סגורות באמצעות פונקציה רציפה. יש שתי דרכים לחזק את הדרישה הזו: לדרוש הפרדה בין יותר זוגות של קבוצות, או הפרדה באופן מוצלח יותר מסתם הפרדה באמצעות פונקציה.

'קבוצות מופרדות' הן קבוצות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A,B} במרחב טופולוגי, שכל אחת מהן זרה לסגור של רעותה (ישנו קשר מסוים בין מונח זה לבין אקסיומות ההפרדה, אבל הוא אינו הדוק במיוחד). כל שתי קבוצות סגורות וזרות הן מופרדות, ולכן הפרדה בין קבוצות מופרדות היא משימה קשה יותר (אפילו בהיעדר ההנחה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_0} ).

  • מרחב שבו אפשר להפריד כל שתי קבוצות מופרדות באמצעות קבוצות פתוחות, נקרא מרחב נורמלי לחלוטין, או מרחב נורמלי תורשתי.

במרחב כזה, כל תת-מרחב הוא נורמלי בטופולוגיה המושרית.

  • מרחב נורמלי לחלוטין שהוא גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , נקרא מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_5} , או מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} לחלוטין.

כל מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_5} הוא בפרט מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} .

בכיוון אחר, אומרים שאפשר להפריד בין הקבוצות A ו- B במרחב X הפרדה מדויקת באמצעות פונקציה, אם קיימת פונקציה רציפה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f:X\rightarrow \mathbb{R}} , כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f^{-1}(0)=A} ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f^{-1}(1)=B} . נעיר שבהפרדה רגילה אנו דורשים רק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f^{-1}(0) \supseteq A} ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f^{-1}(1) \supseteq B} . קבוצות שאפשר להפריד ביניהן הפרדה מדויקת מוכרחות להיות קבוצות סגורות, שהרי הקבוצות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \{0\}} ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \{1\}} סגורות בעצמן.

מרחב נורמלי באופן מושלם הוא נורמלי, ואף נורמלי לחלוטין (את זה קצת קשה יותר להוכיח). במרחב נורמלי באופן מושלם, כל קבוצה סגורה היא קבוצת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ G_\delta} (או באופן שקול: כל קבוצה פתוחה היא קבוצת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ F_\sigma} ). תכונה זו מאפיינת מרחבים נורמליים באופן מושלם.

  • מרחב נורמלי באופן מושלם שהוא גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , נקרא מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} באופן מושלם, או מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_6} .

כל מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_6} הוא בפרט מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_5} .

מרחב מטרי מקיים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_6} , ולכן גם את שאר תכונות ההפרדה שמנינו.

טענות הקשורות לאקסיומות ההפרדה

מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_3} בעל בסיס בן מניה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} .
תת מרחב של מרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_i} (כאשר i=1,2,3,3.5) הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_i} .
מרחב מכפלה של מרחבי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_i} (כאשר i=1,2,3,3.5) גם הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_i} .
שתי הטענות הקודמות אינן נכונות בהכרח עבור מרחבי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} - למשל המרחבים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} והפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_1} הם נורמליים, אולם מכפלתם אינה נורמלית, ומכפלה זו היא בעצמה תת-מרחב של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_1 \times \Omega_1} , שהוא מרחב נורמלי.

סיכום

הטבלה מציגה את שמו של מרחב המקיים משימת הפרדה נתונה באופן נתון. בסוגריים מצוין שמו של מרחב כזה, אם מניחים בנוסף את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} .

סיכום שתי נקודות קבוצה סגורה ונקודה שתי קבוצות סגורות שתי קבוצות מופרדות
הפרדה מדויקת על ידי פונקציה - - נורמלי באופן מושלם (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_6} ) -
הפרדה על ידי פונקציה האוסדורף לחלוטין רגולרי לחלוטין (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{3\frac{1}{2}}} ) נורמלי -
הפרדה על ידי סביבות סגורות אוריסון (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{2\frac{1}{2}}} ) רגולרי נורמלי -
הפרדה על ידי סביבות האוסדורף (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_2} ) רגולרי (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_3} ) נורמלי (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_4} ) נורמלי לחלוטין (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_5} )

כל מרחב המופיע בטבלה מקיים גם את התכונה במשבצת שמתחת לזו בה הוא מופיע. אם מניחים את התכונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_1} , אז כל מרחב מקיים גם את התכונות שמשמאל למשבצת שבה הוא מופיע. בפרט, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_b \Rightarrow T_a} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b > a} . בכך בנינו מעין היררכיה בין אקסיומות ההפרדה.


לקריאה נוספת

  • דניאלה ליבוביץ, טופולוגיה קבוצתית, פרק 5 (כרך ג'), הוצאת האוניברסיטה הפתוחה, 1997.


קישורים חיצוניים

Logo hamichlol 3.png
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0