אי-שוויון ינסן

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
קובץ:Yensen.JPG
אי-שוויון ינסן

במתמטיקה, אי-שוויון ינסן טוען שממוצע ערכי פונקציה קמורה גדול או שווה לערך הפונקציה בממוצע הנקודות. אי-השוויון נקרא על שם המתמטיקאי הדני יוהאן ינסן.

ניתן להבין זאת באופן אינטואיטיבי על ידי התרשים:

ממוצע הנקודות הוא אמצע הקטע שעליו מדברים, באיור הוא מסומן על ידי הקו המקווקו. ניתן לראות כי ערך הגרף הכתום בנקודה זו, מכיוון שהוא לינארי, שווה לממוצע ערכי הפונקציה (הכתומה). ניתן להשתכנע בקלות מכיוון שממוצע כל שתי נקודות הנמצאות מימין ומשמאל לאמצע הקטע באותו מרחק שווה לערך באותה נקודה.

עתה, נוסיף גרף (הגרף הירוק) המתאר פונקציה קמורה. קל לראות כי מכיוון שהפונקציה קמורה, כל הערכים של הפונקציה יהיו גבוהים יותר מערכי הפונקציה הקודמת, או לפחות שווים להם. מכיוון שבפונקציה הכתומה הערך באמצע שווה לממוצע, אם הערכים יגדלו ממוצע הערכים בהכרח יעלה ולכן הערך באמצע יהיה קטן בהכרח מממוצע הערכים. הערך הממוצע יהיה גדול מערך הפונקציה בממוצע הנקודות, כמו שאומר אי-שוויון ינסן.

המקרה הבדיד

אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f:(a,b)\to\R} פונקציה ממשית קמורה המוגדרת על קטע ואם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_1,\ldots,x_n\in(a,b)} אז מתקיים .

אין במשפט דרישה שהנקודות הן שונות. ניתן להשתמש בעובדה זו ולהוכיח הכללה של המשפט שבה הממוצע הרגיל מוחלף בממוצע משוקלל כלשהו.

אם הפונקציה היא קעורה, אי-השוויון הוא הפוך.

המקרה הכללי

אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f:(a,b)\to\R} פונקציה ממשית קמורה ואם מידת הסתברות על הקטע אז הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f\left(\int_{(a,b)}x\,d\mu\right)\le\int_{(a,b)}f(x)\,d\mu} .

מכאן ניתן לגזור כי עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g:(a,b)\to\R} פונקציה ממשית קעורה ואם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mu} מידת הסתברות על הקטע אז הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g\left(\int_{(a,b)}x\,d\mu\right)\ge\int_{(a,b)}g(x)\,d\mu} .

שימושים

  • אם משתמשים בפונקציה הקמורה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \exp} ומציבים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_i=\log(a_i)} , מקבלים את אי-שוויון הממוצעים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[n]{a_1\times\cdots\times a_n}\le\frac{a_1+\cdots+a_n}{n}} .
P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.