דטרמיננטת דיידונה
בתורת החוגים, דטרמיננטת דודונה היא הכללה של הדטרמיננטה ממטריצות מעל חוגים קומוטטיביים, אל מטריצות מעל חוג מקומי כלשהו (לרבות שאינו קומוטטיבי). הדטרמיננטה נקראת כך על-שם המתמטיקאי הצרפתי ז'אן דודונה (אנ') שהמציא אותן ב-1943.
לכל חוג קומוטטיבי , הדטרמיננטה היא הומומורפיזם מחבורת המטריצות ההפיכות אל החבורה הכפלית של . אם חוג לא קומוטטיבי לא קיימת פונקציה כזו. במקומה, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} חוג מקומי (בפרט: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} חוג פשוט, ובמיוחד חוג עם חילוק), קיימת פונקציה יחידה אל האבליזציה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{det}\,{:}\,\operatorname{GL}_n(R) \rightarrow R^{\times}/[R^{\times},R^{\times}]} , המקיימת את התכונות הבאות:
- אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A'} מתקבלת מהוספת כפולה (שמאלית) בסקלר של שורה אחת לשורה אחרת במטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{det}(A') = \operatorname{det}(A)} ;
- אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A'} מתקבלת מהכפלת שורה של המטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} בקבוע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{det}(A') = a\operatorname{det}(A)} ;
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{det}(I) = 1} .
הדטרמיננטה הזו כפלית, מחליפה סימן תחת החלפת שורות, ואינה מושפעת משחלוף המטריצה. אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} חוג קומוטטיבי (מקומי), כגון שדה, אז זו הדטרמיננטה המוכרת מאלגברה ליניארית.
מקורות
- J. Rosenberg, Algebraic K-Theory and its applications, section 2.2.
דטרמיננטת דיידונה28203506Q5275226