מרחב חסום לחלוטין

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בטופולוגיה, מרחב מטרי שניתן לכסות במספר סופי של כדורים בכל גודל נתון נקרא מרחב חסום לחלוטין, או מרחב חסום כליל. כל מרחב חסום לחלוטין הוא כמובן חסום. ההפך נכון למשל עבור תת-קבוצות של המרחב האוקלידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}^n} , אבל באופן כללי ישנם מרחבים חסומים שאינם חסומים לחלוטין, למשל עבור הדיסקרטי אשר מרחק כל שתי נקודות בו הוא 1. מרחב זה הוא בוודאי חסום, מפני שמרחק כל נקודה מהאפס הוא 1. המרחב אינו חסום כליל, וזאת מפני שאם נבחר את רדיוס הכדורים בתור חצי, אז הדרך היחידה לכסות את המרחב היא לקחת את כל הנקודות במרחב, משום שכדור ברדיוס חצי סביב הנקודה, מכיל רק את הנקודה עצמה.

בצורה פורמלית, נגדיר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon} -רשת כקבוצה של נקודות כך שכל נקודה במרחב נמצאת במרחק קטן מ-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon} מאחת מנקודות הקבוצה. מרחב מטרי הוא חסום לחלוטין אם לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon} קיימת במרחב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon} -רשת סופית. אפיון אחר: מרחב מטרי הוא חסום לחלוטין אם ורק אם לכל סדרה במרחב יש תת-סדרה שהיא סדרת קושי.

כל מרחב מטרי קומפקטי הוא חסום לחלוטין, וגם שלם. גם להפך: מרחב שלם וחסום לחלוטין הוא תמיד קומפקטי.