פונקציית הניקוד
בסטטיסטיקה, סטטיסטי הוא מספיק ביחס למודל סטטיסטי ולפרמטר הבלתי ידוע, אם אין סטטיסטי אחר שיכול להיות מחושב מאותו מדגם, שיוסיף מידע ביחס לערך הפרמטר. במילים אחרות, סטטיסטי הוא מספיק עבור משפחה של התפלגויות, אם כל המידע לגבי ההתפלגות שממנה נלקח המדגם, נמצא בערך של הסטטיסטי.
הגדרה מתמטית
סטטיסטי הוא מספיק לפרמטר , אם ההתפלגות המותנית של המדגם בהינתן הערך של אינה תלויה ב-. במילים אחרות, הפונקציה תלויה אולי ב-x ו-t, אבל לא ב-.
משפט הפירוק של פישר וניימן
משפט הפירוק של פישר וניימן (באנגלית: Fisher–Neyman factorization theorem) מספק אפיון נוח לכך שסטטיסטי הוא מספיק: אם פונקציית הצפיפות היא , אזי לפי המשפט הוא מספיק עבור אם ורק אם קיימות פונקציות אי-שליליות g ו-h כך ש:
כלומר, ניתן לפרק את פונקציית הצפיפות למכפלה של שני גורמים, כך שגורם אחד, h, אינו תלוי ב- והגורם השני, g, אשר כן תלוי ב-, תלוי ב-x רק דרך .
קל לראות שאם היא פונקציה חד-חד-ערכית ו- הוא סטטיסטי מספיק, אזי הוא סטטיסטי מספיק גם כן. בפרט, ניתן לכפול סטטיסטי מספיק בקבוע שאינו אפס, ולקבל סטטיסטי מספיק.
משמעות לגבי הסקה סטטיסטית
אחת ההשלכות של משפט הפירוק היא שכשמשתמשים בהסקה סטטיסטית על סמך נראות, שני מאגרי נתונים בגודל זהה אשר להם בדיוק אותו ערך עבור הסטטיסטי המספיק , תמיד יספקו את אותה מסקנה לגבי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} (למשל: רווח סמך ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} , דחיית/אי-דחיית השערה לגבי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} ). לפי קריטריון הפירוק התלות של הנראות ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} היא רק ביחד עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x)} . מכיוון שזה נכון לגבי שני מאגרי הנתונים שלהם אותו ערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x)} , התלות של הנראות ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} תהיה זהה גם כן, מה שיוביל להסקה סטטיסטית זהה.
ניסוח מדויק
יהיו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1, X_2, \ldots, X_n} תצפיות של מדגם מקרי מהתפלגות עם פונקציית צפיפות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x, \theta)} עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta \in \Theta} , ויהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1 = u_1(X_1, X_2, \ldots, X_n)} סטטיסטי שפונקציית הצפיפות שלו היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_1(y_1 ; \theta)} . אז הוא סטטיסטי מספיק עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} אם ורק אם קיימת פונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} כך ש:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n f(x_i; \theta) = g_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] H(x_1, x_2, \dots, x_n)\,}
הוכחה
ההוכחה להלן ניתנה על ידי רוברט הוג ואלן קרייג.[1]
כיוון אחד
נניח ש:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n f(x_i; \theta) = g_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] \cdot H(x_1, x_2, \dots, x_n)}
ונוכיח ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1} הוא סטטיסטי מספיק.
יהיו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_i = u_i(X_1, X_2, \ldots, X_n)} , הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = 2, 3, \ldots, n} סטטיסטים כלשהם שפונקציות הצפיפות שלהם הן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_i(y_i ; \theta)} בהתאמה.
נבצע את הטרנספורמציה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_i = u_i(x_1, x_2, \ldots, x_n)} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = 1, 2, \ldots, n} , כשהפונקציות ההפוכות הן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_j = w_j(y_1, y_2, \ldots, y_n)} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle j = 1, 2, \ldots, n} , ויעקוביאן . אז:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{j=1}^n f \left[ w_j(y_1, y_2, \dots, y_n); \theta \right] = |J| \cdot g_1 (y_1; \theta) H \left[ w_1(y_1, y_2, \dots, y_n), \dots, w_n(y_1, y_2, \dots, y_n) \right] }
הביטוי בצד שמאל של המשוואה הוא הצפיפות המשותפת: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(y_1, y_2, \dots, y_n; \theta)} של המשתנים (הסטטיסטים): הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1, Y_2, \ldots, Y_n} .
בצד ימין של המשוואה, הביטוי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_1(y_1;\theta)} הוא פונקציית הצפיפות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1} , וכך יוצא שהביטוי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H[ w_1, \dots , w_n] \cdot |J|} שווה ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(y_1,\dots,y_n;\theta)} חלקי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_1(y_1;\theta)} , כלומר, הוא שווה לפונקציית הצפיפות המותנה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(y_2, \dots, y_n \mid y_1; \theta)} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_2,\dots,Y_n} בהינתן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1 = y_1} .
אבל לפי ההנחה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x_1,x_2,\dots,x_n)} , וממילא גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\left[w_1(y_1,\dots,y_n), \dots, w_n(y_1, \dots, y_n))\right]} אינו תלוי ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} . מכיוון ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} לא הוכנס בתוך הטרנספורמציה שביצענו, וכן לא בא לידי ביטוי ביעקוביאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} , יוצא ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(y_2, \dots, y_n \mid y_1; \theta)} אינו תלוי ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} (אלא רק ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1} , וזאת לכל סטטיסטים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_2, Y_3, \ldots, Y_n} אפשריים), ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1} הוא סטטיסטי מספיק עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} .
כיוון שני
נניח ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1} הוא סטטיסטי מספיק, ונוכיח ש:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n f(x_i; \theta) = g_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] \cdot H(x_1, x_2, \dots, x_n)\,}
כיוון ש-ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1} הוא סטטיסטי מספיק, ניתן לרשום:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(y_1,\dots,y_n;\theta)=g_1(y_1; \theta) h(y_2, \dots, y_n \mid y_1)\,}
כש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(y_2, \dots, y_n \mid y_1)} אינו תלוי ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} כיוון ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_2 ... Y_n} תלוי רק ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1 ... X_n} , אשר הם בלתי תלויים ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} בהינתן שידוע שהוא סטטיסטי מספיק.
באמצעות חלוקת שני צידי המשוואה בערך המוחלט של היעקוביאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} , והחלפת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1, \dots, y_n} בפונקציות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1(x_1, \dots, x_n), \dots, u_n(x_1,\dots, x_n)} , מתקבלת המשוואה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{g\left[ u_1(x_1, \dots, x_n), \dots, u_n(x_1, \dots, x_n); \theta \right]}{|J*|}=g_1\left[u_1(x_1,\dots,x_n); \theta\right] \frac{h(u_2, \dots, u_n \mid u_1)}{|J*|}}
כש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle J*} הוא היעקוביאן עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1,\dots,y_n} שהוחלפו על ידי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1, \dots, x_n} .
הצד הימני הוא בהכרח הצפיפות המשותפת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n f(x_i; \theta)} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1,\dots,X_n} . נסמן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_1\left[u_1(x_1,\dots,x_n); \theta\right] = \frac{g_1\left[u_1(x_1,\dots,x_n); \theta\right]}{|J*|}} , ונקבל:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n f(x_i; \theta) = G_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] \cdot h(u_2,\dots,u_n\mid u_1)}
כיוון ש- (ולכן גם ) אינו תלוי ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} (לפי ההנחה), מתקבל ש:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x_1,\dots,x_2)=\frac{h(u_2,\dots,u_n\mid u_1)}{|J*|}}
היא פונקציה שאינה תלויה ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} , כלומר:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n f(x_i; \theta) = G_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] \cdot H(x_1, x_2, \dots, x_n)}
כנדרש.
סטטיסטי מספיק מינימלי
סטטיסטי מספיק הוא מינימלי אם הוא יכול להיות מוצג כפונקציה של כל סטטיסטי מספיק אחר. במילים אחרות, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(X)} הוא סטטיסטי מספיק מינימלי אם ורק אם:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(X)} הוא סטטיסטי מספיק
- לכל סטטיסטי מספיק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(X)} , קיימת פונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(X) = f(T(X))}
באופן אינטואיטיבי, סטטיסטי מספיק מינימלי תופס באופן היעיל ביותר את כל המידע בנוגע לפרמטר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} .
מאפיין שימושי של סטטיסטי מספיק מינימלי הוא שכאשר פונקציית הצפיפות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_\theta} קיימת, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(X)} הוא סטטיסטי מספיק מינימלי אם ורק אם:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f_\theta(x)}{f_\theta(y)}} בלתי תלוי ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Longleftrightarrow} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(x) = S(y)}
זה נובע באופן ישיר ממשפט הפירוק של פישר-נימן.
מצב בו לא קיים סטטיסטי מספיק מינימלי הוצג על ידי הסטטיסטיקאי ההודי Raghu Raj Bahadur, בשנת 1954. אולם, תחת תנאים מתונים למדי, סטטיסטי מספיק מינימלי תמיד קיים.
בפרט, במרחב אוקלידי, התנאים הללו תמיד מתקיימים אם המשתנים המקריים (הקשורים ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\theta} ) הם כולם בדידים או כולם רציפים.
אם קיים סטטיסטי מספיק מינימלי, אזי סטטיסטי מספיק שלם (אנ') הוא בהכרח מינימלי. בעוד שקשה למצוא מקרים בהם סטטיסטי מספיק מינימלי אינו קיים, לא קשה למצוא מצבים בהם לא קיים סטטיסטי מספיק שלם.
אוסף היחסים של פונקציות נראות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{\frac{L(\theta_1|X)}{L(\theta_2|X)}\right\}} הוא סטטיסטי מספיק מינימלי אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X|\theta)} הוא בדיד או בעל פונקציית צפיפות.
דוגמאות
התפלגות ברנולי
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1,...,X_n} משתנים מקריים בלתי תלויים בעלי התפלגות ברנולי עם פרמטר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} , אזי הסכום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(X) = X_1+...+X_n} הוא סטטיסטי מספיק עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} .
מאחר שהמשתנים המקריים הם בלתי תלויים, פונקציית הצפיפות המשותפת מקיימת:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_p(X) = p^{x_1}(1-p)^{1-x_1} p^{x_2}(1-p)^{1-x_2}\cdots p^{x_n}(1-p)^{1-x_n} \,\!}
ועל ידי קיבוץ חזקות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} ושל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-p} , מתקבל:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_p(X) = p^{\sum x_i}(1-p)^{n-\sum x_i} = p^{T(x)}(1-p)^{n-T(x)}\,\!}
הצגה זו מקיימת את תנאי משפט הפירוק כאשר:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(X) = 1 ; \quad g(T(x),p) = p^{\sum x_i}(1-p)^{n-\sum x_i}) }
הפרמטר הבלתי ידוע, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p} , תלוי בנתונים (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1,...,X_n} ) רק דרך הסטטיסטי שלהם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x) = {\sum_i x_i}}
התפלגות אחידה
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_1,...,X_n} משתנים מקריים בלתי תלויים המתפלגים באופן אחיד בטווח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,\theta]} אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(X) = \max(X_1,...,X_n)} הוא סטטיסטי מספיק ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} .
מאחר שהמשתנים המקריים הם בלתי תלויים, פונקציית הצפיפות המשותפת מקיימת:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f_\theta(x_1,\ldots,x_n) &= \frac{1}{\theta}\mathbf{1}_{\{0\leq x_1\leq\theta\}} \cdots \frac{1}{\theta}\mathbf{1}_{\{0\leq x_n\leq\theta\}} \\ &= \frac{1}{\theta^n}\mathbf{1}_{\{0\leq\min\{x_i\}\}}\mathbf{1}_{\{\max\{x_i\}\leq\theta\}} \end{align}}
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{1}_{\{\cdots\}}} היא פונקציית האינדיקטור. לכן, אם נסמן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(T(x),\theta) = \frac{1}{\theta^n} \cdot \mathbf{1}_{\{\max\{x_i\}\leq \theta\}} = \frac{1}{\theta^n} \cdot \mathbf{1}_{\{T(x)\leq \theta\}}}
וכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(X) = \mathbf{1}_{\{0\leq \min(X_i)\}}} ,
נקבל את תנאי משפט הפירוק, ושאכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(X) = \max(X_i)} הוא סטטיסטי מספיק.
התפלגות פואסון
אם משתנים מקריים בלתי תלויים בעלי התפלגות פואסון עם פרמטר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} , אזי הסכום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(X) = X_1+...+X_n} הוא סטטיסטי מספיק עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} .
על מנת להיווכח בכך, נתבונן בפונקציית ההסתברות המשותפת:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pr(X=x)=P(X_1=x_1,X_2=x_2\ldots,X_n=x_n)\, }
ומכיוון שהתצפיות בלתי תלויות:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n) = P(X_1=x_1) P(X_2=x_2) \ldots P(X_n=x_n) }
לכן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=x) = {e^{-\lambda} \lambda^{x_1} \over x_1 !} \cdot {e^{-\lambda} \lambda^{x_2} \over x_2 !} \cdots {e^{-\lambda} \lambda^{x_n} \over x_n !} \, = e^{-n\lambda} \lambda^{(x_1+x_2+\cdots+x_n)} \cdot {1 \over x_1 ! x_2 !\cdots x_n ! } \, = e^{-n\lambda} \lambda^{T(x)} \cdot {1 \over x_1 ! x_2 !\cdots x_n ! } \, }
אם נסמן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(T(x),\lambda) = e^{-n\lambda} \lambda^{T(x)} \,} , וכן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(X) = {1 \over x_1 ! x_2 !\cdots x_n ! } \,} ,
נקבל את תנאי משפט הפירוק, ושאכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(X) = X_1+...+X_n} הוא סטטיסטי מספיק.
הערות שוליים
- ↑ Hogg, Robert V.; Craig, Allen T. (1995). Introduction to Mathematical Statistics. Prentice Hall. ISBN 978-0-02-355722-4.
פונקציית הניקוד24951038Q1099110