פונקציית סימן השאלה של מינקובסקי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
פונקציית סימן השאלה של מינקובסקי

פונקציית סימן השאלה של מינקובסקי היא פונקציה ממשית בעלת מספר תכונות מעניינות ולא־שגרתיות, ומהווה גורם עניין בתחומים כמו אנליזה מתמטית, תורת המידה ותורת הפרקטלים. את הפונקציה מסמנים על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?(x)} ; השם והסימון הנ"ל ניתנו לפונקציה בגלל התכונות הלא־שגרתיות והלא־מובנות שלה.

הפונקציה הוגדרה על ידי הרמן מינקובסקי בשנת 1904; היא נחקרה על ידי מספר מתמטיקאים, בהם ארנו דנז'ווא, שהראה בשנת 1938 כיצד מעבירה הפונקציה מספרים ריבועיים אל מספרים רציונליים.

הגדרה

הפונקציה מוגדרת בנפרד על המספרים הרציונליים ועל המספרים האי־רציונליים.

עבור מספר רציונלי נתון, מביטים בפיתוח שלו לשבר משולב סופי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [a_0;a_1,\ldots,a_n]} , ומגדירים

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?(x)=a_0+2\sum_{k=1}^n\frac{(-1)^{k-1}}{2^{a_1+\cdots+a_k}}}

עבור מספר אי־רציונלי, מביטים בפיתוח שלו לשבר משולב אינסופי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [a_0;a_1,\ldots]} , ומגדירים

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?(x)=a_0+2\sum_{k=1}^\infty\frac{(-1)^{i-1}}{2^{a_1+\cdots+a_k}}}

הפונקציה אכן מוגדרת לכל מספר אי־רציונלי, כפי שניתן להוכיח בעזרת מבחן לייבניץ.

הסבר אינטואיטיבי

מאחורי ההגדרה לעיל ישנו הסבר אינטואיטיבי, אשר בליבתו מסתתרת המרה בין דרכי תצוגה של מספרים ממשיים (בדומה לפונקציית קנטור, הממירה בין בסיסים).

בהינתן מספר כלשהוא בין 0 ל־1, ניתן להסתכל על הייצוג הבינארי האינסופי שלו, המתפרש לסדרה של אפסים ואחדות. על אותה סדרה ניתן גם להסתכל בתור השבר המשולב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [a_0;a_1,\ldots,a_n,\ldots]} , כאשר המספרים הטבעיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_i} הם מספר האפסים והאחדות הרצופים על־פי הסדר.

לדוגמה: נביט בסדרה הבינארית . הייצוג הבינארי שלה הוא המספר הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle {\tfrac {2}{7}}} ; הייצוג שלה לפי שבר משולב הוא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [0;2,1,2,1,2,1,\ldots]} , השווה ל־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \tfrac{\sqrt3-1}{2}} .

אם כן, פונקציית סימן השאלה מתאימה בין מספר המיוצג באופן של שבר משולב למספר הבינארי בעל אותו הייצוג. בפרט, על־פי הדוגמה מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?\left(\tfrac{\sqrt3-1}{2}\right)=\tfrac27} .

תכונות

עבור שני שברים מצומצמים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{p}{q},\frac{r}{s}} כך ש־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |ps-rq|=1} מתקיים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?\left(\frac{p+r}{q+s}\right)=\frac12\left(?\bigg(\frac{p}{q}\bigg)+?\bigg(\frac{r}{s}\bigg)\right)}

בעזרת נוסחה זו ניתן לחשב את פונקציית סימן השאלה עבור כל מספר רציונלי.

פונקציית סימן השאלה היא פונקציה אי־זוגית, רציפה ועולה חזק, אך איננה רציפה בהחלט. היא גם פונקציה סינגולרית.

הפונקציה ממפה מספרים רציונליים אל מספרים די-אדיים רציונליים (כלומר מהצורה המצומצמת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x}{2^y}} ), ומספרים ריבועיים (שורשים של משוואות ריבועיות) אי־רציונליים אל מספרים רציונליים לא די-אדיים בהכרח; מעבר לכך, היא מתאימה באופן מלא בין מספרים ריבועיים למספרים רציונליים. עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x} אי־רציונלי, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?(x)} הוא או אלגברי מדרגה גדולה מ־2, או טרנסצנדנטי.

מתקיים ועל כן הפונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?(x)-x} הנה מחזורית בעלת מחזור 1.

Minkowski'sQuestionMarkLessTheIdentity.png

הפונקציה ההופכית – פונקציית הקופסה של קונוויי

היות שהפונקציה עולה חזק, הרי שהיא חד-חד-ערכית, ועל כן הפיכה. ההופכית שלה היא פונקציית הקופסה של קונוויי, שהתגלתה באופן בלתי תלוי על ידי ג'ון הורטון קונוויי. הסימון המקובל עבורה הוא קופסה סביב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x} , והיא שווה ל־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ?^{-1}(x)} .

ניתן לחשב את הפונקציה על ידי מציאת הפיתוח הבינארי של המספר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\{x\}}{2}=\frac{x-\lfloor x\rfloor}{2}} , ולאחר מכן לבצע את ההתאמה כמתואר לעיל ולקבל את השבר המשולב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [a_0;a_1,\ldots]} , כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_0=\lfloor x\rfloor} .

ראו גם

לקריאה נוספת


סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0