ריכרד בראוור

מתוך המכלול, האנציקלופדיה היהודית
גרסה מ־00:52, 16 בנובמבר 2017 מאת יהודה שמחה ולדמן (שיחה | תרומות) (גרסה אחת יובאה: ייבוא מוויקיפדיה העברית: ראה רשימת התורמים)
קפיצה לניווט קפיצה לחיפוש

ריכרד דָגוֹבֶּרט בראוור (Richard Dagobert Brauer;‏ 10 בפברואר 190117 באפריל 1977) היה מתמטיקאי יהודי גרמני-אמריקאי, שנחשב לאחד המתמטיקאים המובילים במאה ה-20. ערך מחקר משמעותי בתחומי האלגברה ותורת המספרים, והיה ממייסדי תורת ההצגות המודולרית. העמיד תלמידי מחקר רבים, בעיקר בתקופת שהותו בקנדה ובארצות הברית.

חייו

את לימודי הדוקטורט ביצע באוניברסיטת ברלין, תחת הנחיות של ישי שור. בשנת 1926 פרסם את עבודת הדוקטור שלו, אשר עסקה בהצגות של חבורות אורתוגונליות ממשיות רציפות. לאחר מכן, החל ללמד בקניגסברג, תחת הנחייתו של קונרד קנופ (אנ'). בעקבות עליית הנאצים לשלטון, הוצע לבראוור על ידי וועדת החרום למלומדים עקורים לעבור ללמד בקנטקי. בראוור הסכים להצעה, ובשנת 1933 החל ללמד בלקסינגטון.

בשנת 1934, עבד יחד עם נתן ג'ייקובסון תחת הנחייתו של הרמן וייל. באותה התקופה, הוזמן על ידי אמי נתר להגיע לקבל משרה בטורונטו. בשנים שלאחר מכן, לימד בראוור גם באוניברסיטת מישיגן ובאוניברסיטת הרווארד.

מבין תלמידיו ניתן למנות את ססיל נסביט (אנ'), רוברט שטיינברג (אנ'), סטפן ג'נינגס (אנ') ודונלד לואיס (אנ').

בראוור היה נשוי לאילזה קרגר, אף היא מתמטיקאית שלמדה עמו בברלין בשנות ה-20. לשניים נולדו שני בנים, ג'ורג' ופרד, שניהם מתמטיקאים.

תרומתו למתמטיקה

בראוור עסק לאורך כל חייו בעיקר באלגברה. היה ממייסדיה של תורת ההצגות המודולרית, ותרם רבות למחקר של תורת החבורות הסופיות. עסק גם באלגבראות פשוטות מרכזיות מעל שדות ובמספרים היפר-מרוכבים.

בראשית דרכו, חקר בראוור אלגבראות חילוק מעל שדות מושלמים. עבודה זו היוותה את המבוא להגדרת חבורת בראוור אותה הציג, הקרויה על שמו. בהמשך, תרם רבות לתורת ההצגות, והוכיח את משפט האינדוקציה של בראוור, הקובע כי חוג הקרקרטים המרוכבים של חבורה סופית נוצר על ידי תת-קבוצה מסוימת של קרטקטרים. בעזרת תוצאה זו, נבנו הכלים לבניית קרקטרים אי-פריקים מעל המרוכבים, ללא נגיעה ישירה בהצגות. הגדיר גם את אלגברת בראוור, המשמשת כלי מחקר בתורת ההצגות של חבורות אורתוגונליות.

מחקרו בתורת ההצגות המודולרית תרם רבות להבנת המבנה של חבורות סופיות. ברוואר ניסח והוכיח את שלושת המשפטים של בראוור, המספקים מידע אודות בלוקים של חבורות ושל תתי-חבורות מסוימות שלהן. משפטים חשובים נוספים שהיה שותף להם בנושא זה הם משפט בראוור-סוזוקי ומשפט אלפרין-בראוור-גורנשטיין, העוסקים בחבורות 2-סילו מסוימות של חבורות פשטות.

בשנת 1955 היה ממוכיחיו של משפט בראוור-פוולר, הקובע כי לכל חבורה מסדר זוגי n יש תת-חבורה אמתית מסדר לכל הפחות n1/3. עבודה זו, בה התגלו כלים למיון חבורות סופיות בעזרת אינוולוציות, עזרה בשלבי משפט המיון לחבורות פשוטות סופיות.

לקריאה נוספת