בעיית שטיינר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בעיית שטיינר היא בעיה שהציג הגאומטרן השווייצרי יאקוב שטיינר ב-1850, בירחון המדעי של August Leopold Crelle.

שטיינר שאל על "המכפלה המקסימלית של החלקים של מספר", כלומר, מהו הערך המקסימלי של המכפלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_1\times\cdots\times a_\frac{n}{m}} , כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_1,\ldots,a_\frac{n}{m}} הם חלקים של מספר קבוע הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} .

לפי אי-שוויון הממוצעים, הערך המקסימלי מתקבל כאשר כל החלקים שווים זה לזה (ול-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m} ) , וערכו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m^\frac{n}{m}=(m^\frac1m)^n} . מכאן עולה כי עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} נתון יש לבחור עבורו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[m]{m}} יהיה מקסימלי.

שטיינר מציין כי "קל למצוא" שהמקסימום מתקבל כאשר שווה לבסיס הלוגריתם הטבעי (ואכן, זהו תרגיל בסיסי בחשבון אינפיניטסימלי). במכתבו לירחון הוא מוסיף כי לכל מספר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c>1} קיים בן־זוג יחיד הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d>1} עבורו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[c]{c}=\sqrt[d]{d}} (במספרים שלמים יש למשוואה זו פתרון יחיד: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[2]2=\sqrt[4]4} ).

מקורות

  • המאמר של שטיינר
  • Jacob Steiner, Works, Vol. 2, p. 423.
  • Heinrich Dorrie, 100 Great Problems of Elementary Mathematics, 1965, problem 89.
קובץ:P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0