האומנות הגדולה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
עמוד הפתיחה של "האומנות הגדולה". השם המלא בלטינית הוא Artis Magnæ, Sive de Regulis Algebraicis Liber Unus או, בעברית, "ספר מספר אחת על האומנות הגדולה, או חוקי האלגברה".

האומנות הגדולה הוא ספר חשוב על אלגברה בסיסית פרי עטו של ג'ירולמו קרדאנו. הספר התפרסם לראשונה בשנת 1545 בשם Artis Magnæ, Sive de Regulis Algebraicis Liber Unus או, בעברית, "ספר מספר אחת על האומנות הגדולה, או חוקי האלגברה". מהדורה שנייה של הספר התפרסמה בשנת 1570, עוד בימי חייו של קרדאנו. ספר זה נחשב לאחד מהחיבורים השיטתיים החשובים ביותר מתקופת הרנסאנס, לצד החיבורים המהפכניים "על תנועתם של גרמי השמים" של קופרניקוס ו"אודות מבנה הגוף האנושי" של אנדריאס וסאליוס, שלושתם יצאו לאור בפער של פחות משנתיים, ב-1543 - 1545. הספר נכתב כמקובל אז בלטינית.

רקע היסטורי

ניקולו טרטליה התפרסם בשנת 1535 לאור הצלחתו בפתרון משוואה ממעלה שלישית מהצורה x3 + ax = b כאשר שני הפרמטרים, הן a והן b, חיוביים, אך נמנע מלגלות את שיטת הפתרון לאחרים. בשנת 1539, בזמן שקרדאנו עבד כמרצה למתמטיקה בית הספר על שם פיאטי שבמילאנו, הוא פרסם את ספר המתמטיקה הראשון שלו, Pratica Arithmeticæ et mensurandi singularis או, בעברית, "מתמטיקה שימושית ומדידות פשוטות". באותה השנה ביקש קרדאנו מטרטיליה להסביר לו את שיטתו לפתרון משוואות ממעלה שלישית. לאחר שבתחילה סרב, התרצה טריטליה וחלק עם קרדאנו את פתרונו ביחד עם בקשה שלא יפרסם את שיטת הפתרון עד שטרטליה לא יפרסם אותה בעצמו. קרדאנו הקדיש מספר שנים בניסיונות להכליל את שיטתו של טרטליה למשוואות מצורות נוספות. בזמן זה, לודוביקו פרארי, תלמידו של קרדאנו, מצא פתרון למשוואה ממעלה רביעית שנעזר בפתרונו של טרטליה למשוואה ממעלה שלישית. לאחר שקרדאנו התוודע אל פתרונותיו של שיפיונה דל-פרו למשוואות ממעלה שלישית שהקדימו את אלו של טרטליה, הדבר דרבן אותו לפרסם את תוצאותיו.

תוכן

הספר מחולק לארבעים פרקים. בספר מפורסמים, לראשונה, פתרונות למשוואה ממעלה שלישית ולמשוואה ממעלה רביעית, תוך ציונם של דל־פרו, טרטליה, ופרארי כמקורות.

כיוון שבזמנו מספרים שליליים לא הובנו היטב, הספר מציין פתרונות שונים למשוואות x3 + ax = b ו- x3 = ax + b עבור ערכים חיוביים של הפרמטרים a ו- b. כדוגמה נוספת, הספר כולל הדרכה לביצוע רדוקציה של משוואות מהצורה x3 + ax2 + bx + c = 0 למשוואות שקולות בלא איבר ריבועי, ושוב, מציין מספר תת-מקרים. לבסוף, דן קרדאנו בספרו ב-13 סוגים שונים של משוואות ממעלה שלישית.

הספר כולל איזכור ראשון בספרות המתמטית לרעיון הריבוי של פתרונות משוואה: קרדאנו מציין שלמשוואה x3 = 12x + 16 ישנו פתרון x=−2 עם ריבוי שתיים.

הספר כולל אזכורים ראשונים למספרים מרוכבים בפרק ה-37 שלו. בהינתן שהפתרון למשוואה מהצורה x3 + px + q  הוא, בכתיבה מודרנית, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}-\frac q2}-\sqrt[3]{\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}+\frac q2},} מספרים מרוכבים צצים באופן טבעי בעת הערכת השורש הפנימי. עם זאת, קרדאנו לא דן מפורשות באף הזדמנות במקרה שבו q2/4 + p3/27 < 0, בהקשר של נוסחה זו. אזכור מפורש של מספרים מרוכבים מופיע בדיון שעורך קרדאנו בבעיה הבאה: "מצא שני מספרים שסכומם עשר ומכפלתם ארבעים". התשובה היא . קרדאנו מכנה את הפתרון "מתחכם" משום שאין לו משמעות פיזית, אך מוסיף בהערה מודגשת "ובכל זאת, הוא עובד", שכן מכפלתם אכן ארבעים וסכומם אכן עשר, ואף הוסיף שפתרון זה הוא "עדין כשם שהוא חסר שימוש".

מקורות

  • Calinger, Ronald (1999), A contextual history of Mathematics, Prentice-Hall, ISBN 0-02-318285-7
  • Cardano, Gerolamo (1545), Ars magna or The Rules of Algebra, Dover (published 1993), ISBN 0-486-67811-3
  • Gindikin, Simon (1988), Tales of physicists and mathematicians, Birkhäuser, ISBN 3-7643-3317-0

קישורים חיצוניים

סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0