הומומורפיזם פרובניוס
באלגברה מופשטת, ובתורת גלואה הומומורפיזם פרובניוס (Frobenius endomorphism) הוא הומומורפיזם של חוגים חילופיים ממאפיין ראשוני, המעלה כל איבר בחזקת . יש לו שימוש מיוחד בתורת גלואה - במקרה זה הוא אוטומורפיזם, ומהווה יוצר של חבורת הגלואה של הרחבת שדות לכל שדה סופי ממאפיין .
הגדרה
יהי חוג חילופי עם יחידה ממאפיין ראשוני הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>0} . הומומורפיזם פרובניוס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi _p :R \to R} מוגדר על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi _p(a)=a^p} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in R} .
זהו הומומורפיזם, משום ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi _p(ab)=(ab)^p=a^p b^p=\phi _p(a)(b)} (כי החוג חילופי), ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi _p(a+b)=(a+b)^p=\sum_{i=0}^{p}{ {p \choose i} a^i b^{p-i}} = a^p+b^p=\phi _p(a)+\phi _p(b)} לפי הבינום של ניוטון. כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} תחום שלמות (או תחום ללא נילפוטנטים) הוא גם חד-חד-ערכי, משום ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^p=0} גורר ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=0} .
לכן, כאשר מדברים על שדות סופיים ממאפיין ראשוני, זהו בהכרח אוטומורפיזם, משום שזו העתקה חח"ע בין קבוצות שוות עוצמה. באופן כללי, שדה ממאפיין חיובי הוא מושלם אם ורק אם הומומורפיזם פרובניוס שלו הוא אוטומורפיזם. כאמור, כל שדה סופי הוא מושלם, ומאידך שדה הפונקציות במשתנה אחד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}_p(t)} איננו מושלם - הומומורפיזם פרובניוס איננו על.
בתורת גלואה
שדות סופיים
ערך מורחב – שדה סופי
נסתכל בשדה הבסיסי עם פעולות חיבור וכפל מודולו p, באשר p מספר ראשוני. נניח ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F/ \mathbb{F}_p} הרחבת שדות מממד סופי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} . במקרה זה הומומורפיזם פרובניוס הוא אוטומורפיזם, השומר על איברי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_p} , לפי המשפט הקטן של פרמה. לכן, הוא שייך לחבורת גלואה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Gal}(F/ \mathbb{F}_p)} . יותר מכך, מתקיים:
משפט: הסדר של אוטומורפיזם פרובניוס הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(\phi _p)=t= [ F : \mathbb{F}_p ] = | \operatorname{Gal}(F/ \mathbb{F}_p) |} .
לכן, מכך שמדובר בהרחבת גלואה וממד ההרחבה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} , גם גודל החבורה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} , ויחד עם המשפט נקבל שהיא ציקלית: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Gal}(F/ \mathbb{F}_p) \cong \mathbb{Z}/t\mathbb{Z}} . בפרט, לפי המשפט היסודי של תורת גלואה נובע ששדה השבת שלו הוא בדיוק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_p} .
בממד אינסופי
כאשר ההרחבה היא מממד סופי, אוטומורפיזם פרובניוס גם הוא בעל סדר אינסופי. בכל זאת, למשל במקרה של חבורת גלואה האבסולוטית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Gal}(\overline{\mathbb{F}_p}/ \mathbb{F}_p)} , הוא איננו יוצר את החבורה - החבורה ודאי לא ציקלית; היא יותר מסובכת. לפי תכונות של גבול הפוך, היות שהוא יוצר כל הרחבה סופית, הוא יוצר כל מנה מאינדקס סופי שלה.
ראו גם
הומומורפיזם פרובניוס35805767