משפט גאוס-בונה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

משפט גאוס-בונה הוא משפט יסודי בגאומטריה דיפרנציאלית, הקושר את הגאומטריה והטופולוגיה של משטח רימן. לפי המשפט, האינטגרל על העקמומיות של המשטח שווה תמיד למאפיין אוילר שלו. המשפט נקרא על שם המתמטיקאיים גאוס, שהכיר את המשפט אך לא פרסם אותו, ופייר אוסיאן בונה שפרסם מקרה פרטי שלו ב-1848.

המשפט

יהי M משטח רימן קומפקטי. נסמן ב-K את עקמומיות גאוס של המשטח. אם המשטח נטול שפה, מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_M K\;dA =2\pi\chi(M), \, } , כאשר dA הוא אלמנט השטח של המשטח, ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \chi(M)} הוא מציין אוילר (שהוא תמיד מספר שלם). כידוע, אם המשטח בר-כיוון, אז מציין אוילר שלו שווה ל-, כאשר g הוא הגנוס של המשטח.

אם למשטח יש שפה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial M} , נסמן ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k_g} את העקמומיות הגאודזית של השפה. אז הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_M K\;dA+\int_{\partial M}k_g\;ds=2\pi\chi(M), \, } , כאשר ds הוא אלמנט האורך של השפה. במקרה שהשפה חלקה למקוטעין, יש לפרש את האינטגרל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{\partial M}k_g\;ds} כסכום של האינטגרלים על הקטעים החלקים, ועוד סכום הזוויות בפינות.

דוגמאות והשלכות

הטופולוגיה של משטח רימן קומפקטי אינה מסובכת: מציין אוילר מגדיר את המשטח. עם זאת, על כל מבנה טופולוגי אפשר להשרות את המבנה המטרי באינסוף דרכים. משפט גאוס-בונה מראה שבכל הדרכים האלה אינטגרל העקמומיות הוא קבוע. במלים אחרות (כשאין למשטח שפה), העקמומיות הממוצעת עומדת ביחס הפוך לשטח. לדוגמה, מציין אוילר של כדור הוא 2. עקמומיות-גאוס של כדור נעשית קטנה יותר ככל שהכדור גדל: העקמומיות של כדור ברדיוס R היא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1/R^2} . לפי משפט גאוס-בונה, יוצא ששטח הכדור כפול העקמומיות הקבועה הזו שווה תמיד ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 4\pi} .

הקומפקטיות היא תנאי הכרחי במשפט: לעיגול היחידה הפתוח עקמומיות אפס, ולכן האינטגרל של העקמומיות שווה גם הוא לאפס; אבל לעיגול יש מציין אוילר 1. אכן, אם מוסיפים לכדור הפתוח את השפה שלו, השוויון מתקיים, משום שהאינטגרל על פני עקמומיות השפה הוא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2\pi} .

הטורוס, שמציין אוילר שלו הוא 0, מספק דוגמה חשובה נוספת. אפשר לבנות אותו על ידי זיהוי הצלעות המנוגדות בריבוע, כך שהעקמומיות היא אפס בכל נקודה, וממילא העקמומיות הממוצעת היא אפס. כאן התוצאה אינה מפתיעה. אבל השיכון הטבעי של הטורוס במרחב האוקלידי מספקת לו עקמומיות חיובית בחלק החיצוני, ושלילית בחלק הפנימי. משפט גאוס-בונה מבטיח שאלו מאזנות זו את זו, והעקמומיות הממוצעת היא אפס בכל שיכון אפשרי.

טריאנגולציה של משטחים מספקת למשפט גרסאות קומבינטוריות.

הכללות

משפט רימן-רוך ומשפט האינדקס של אטיה-זינגר מכלילים את משפט גאוס-בונה.


סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0