קירוב ליניארי

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף קירוב לינארי)
קפיצה לניווט קפיצה לחיפוש
הקו המשיק

קירוב ליניארי או קירוב מסדר ראשון הוא מושג במתמטיקה המתאר קירוב של פונקציה מתמטית כלשהי באמצעות פונקציה ליניארית (ליתר דיוק, פונקציה אפינית). לקירובים ליניארים יש שימוש נרחב במדעים ובמתמטיקה כדי לקבל קירוב לערך הפונקציה בסביבה של ערך קבוע מראש. היות שפונקציות ליניאריות הן קלות לחישוב ולפתרון, קירובים ליניארים מועדפים כמעט תמיד בניתוחים אנליטיים ונומריים אם הם מספקים את הדיוק הנדרש.

כאשר לפונקציה קיים קירוב ליניארי, נאמר שהפונקציה דיפרנציאבילית.

הגדרה

בהינתן פונקציה על מרחב הממשיים שהיא רציפה וגזירה ושנגזרתה רציפה גם היא בסביבה של , מתקבל מטור טיילור עבור כי: כאשר הוא איבר השארית המייצג את סכום האיברים מסדר גבוה יותר. קירוב ליניארי, או קירוב מסדר ראשון, מתקבל על ידי השמטת השארית, כך שמתקבלת הנוסחה:

ככל ש- יהא קרוב יותר ל- כך שגיאת הקירוב תהא קטנה יותר שכן האיברים של החזקות הגבוהות יותר של ישאפו מהר יותר לאפס ויהיו זניחים ביחס לאיבר הליניארי ב- והאיבר הקבוע.

למעשה הנוסחה שלעיל היא בדיוק משוואת המשיק לגרף של הפונקציה בנקודה .

ניתן לבצע קירוב ליניארי לפונקציות וקטוריות דיפרנציאביליות באופן דומה. לדוגמה, בהינתן פונקציה דיפרנציאבילית על המספרים הממשיים, הקירוב הליניארי של עבור קרובים ל- נתון על ידי הנוסחה:

דוגמת חישוב

ניתן לחשב קירוב לערך הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle {\sqrt[{3}]{25}}} על ידי קירוב ליניארי של הפונקציה , כלומר לחשב את הקירוב על ידי חישוב הערך .

  1. ראשית עלינו למצוא את הנגזרת הראשונה של הפונקציה:
  2. ואז לפי משוואת הקירוב הליניארי:

התוצאה המתקבלת, 2.926, קרובה למדי לערך האמיתי של המספר: 2.924. שגיאת הקירוב המוחלטת היא 0.002, ושגיאת הקירוב היחסית היא 0.0684%.

יישומים

דיפרנציאל

ערך מורחב – דיפרנציאל (מתמטיקה)

עבור פונקציות ממשיות רבות משתנים, , חישוב הקירוב הליניארי הופך להיות כלי מרכזי בניתוח הפונקציות.

עבור פונקציה סקלרית, , הקירוב הליניארי בנקודה הנמדדת אשר נמצאת בסביבות הנקודה המקורית מתקבל על ידי הגרדיאנט על פי הנוסחה:

לפונקציה וקטורית כללית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{f} \colon \mathbb{R}^n\rarr\mathbb{R}^m } , ערך הקירוב הליניארי מתקבל על ידי מטריצת יעקובי המסומנת כאן באות Df (באמצעות כפל מטריצות): הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{f} (\mathbf{r}) \approx \mathbf{f} ( \mathbf{r_0} ) + Df ( \mathbf{r_0} ) \cdot \Delta \mathbf{r} }

כאשר הנקודה הנמדדת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}} שואפת בגבול לנקודה המקורית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r_0}} (ובהעברת אגף) מתקבלת הגדרת הדיפרנציאל, מושג יסודי בניתוח פונקציות אלו: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\mathbf{f} = Df \cdot d\mathbf{r}}

המשמעות הגאומטרית של הקירוב הליניארי עבור פונקציות כאלה, היא משוואת המישור המשיק לגרף בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{r}} .

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

קירוב ליניארי38279784Q2071054