ממד גלפנד-קירילוב

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת החוגים, ממד גלפנד-קירילוב הוא מספר ממשי אי-שלילי המותאם למודול מעל אלגברה. הממד הוא מדד לקצב הגידול של המודול ומכליל את המונח ממד קרול של מודול מעל אלגברה קמוטטיבית, תוך שהוא מקיים חלק מהתכונות שלו. במקור, הממד הוגדר בהקשר של מעלת טרנסצנדנטיות לא-קומוטטיבית, שאפשרה להוכיח כי חוגי השברים של אלגברות וייל שונות אינם איזומורפיים זה לזה.

מקרה פרטי וחשוב שבו נחוץ ממד זה הוא כשרואים את האלגברה כמודול מעל עצמה (לזה קוראים 'ממד גלפנד-קירילוב של האלגברה'). עבור אלגברה אפינית, ניתן לחשב את הממד באמצעות בחירת קבוצת יוצרים (סופית) וחישוב ממדי המרחבים הווקטוריים הנפרשים באמצעות מילים (מונומים) באותם יוצרים. כך בא לביטוי אופיה הקומבינטורי של האלגברה בחישוב הממד. ממד גלפנד-קירילוב שימושי בגאומטריה לא קומוטטיבית, שם משתמשים בו כדי למיין יריעות לא קומוטטיביות.

הגדרה

יהי k שדה ו R אלגברה מעליו. יהי M מודול מעל R. ממד גלפנד-קירילוב של M מעל R מוגדר בתור:

GKdimR(M)=suplim supnlogdimkM0Vnlogn

כאשר הסופרמום עובר על כל תתי המרחבים ממד סופי VR ו-M0M.

הממד נדון בהרחבה במקרה שבו רואים את האלגברה R כמודול מעל עצמה, בכזה מקרה הוא נקרא ממד גלפנד-קירילוב של האלגברה.

תכונות

ממד גלפנד-קירילוב של אלגברה אפינית הוא אפס אם ורק אם הממד שלה (כמרחב וקטורי) סופי. אם האלגברה אינה אפינית הטענה איננה נכונה (דוגמה נגדית היא הגבול הישר של כל חוגי המטריצות מעל שדה קבוע). לפי משפט של סמול, סטאפורד ווארפילד[1] כל אלגברה אפינית מממד 1 היא אלגברה עם זהויות. הממד אינו מקבל ערכים לא שלמים קטנים מ-2[2]. לפי משפט של Smoktunowicz אין תחומים מדורגים עם ממד לא שלם בין 2 ל־3.

במקרה הקומוטטיבי, ממד גלפנד קירילוב מתלכד עם ממד קרול (האורך המקסימלי של שרשרת אידאלים ראשוניים). בפרט, הוא תמיד שלם. לכל אלגברת-PI אפינית יש ממד סופי (זו תוצאה ממשפט הבסיס של שירשוב). הממד של אלגברת-PI אפינית ניתנת להצגה (כלומר, כזו המשוכנת בחוג מטריצות מעל חוג קומוטטיבי, למשל אלגברה ראשונית עם זהויות) הוא שלם, אך קיימות אלגברות-PI אפיניות עם ממד לא שלם.

הממד מונוטוני לאלגברות מנה (מעל שדה הבסיס).

האי שוויון של ברנשטיין קובע כי ממד גלפנד-קירילוב של כל מודול נוצר סופית (לא אפסי) מעל אלגברת וייל מסדר n מעל שדה ממאפיין אפס אינו קטן מ-n.

דיכוטומיה בממד 2

מכיוון ש-2 הוא הערך המינימאלי האפשרי לאלגברה אפינית, שאינו מבטיח בוודאות שהיא מקיימת זהות פולינומית, התנהגותה של אלגברה מממד כזה (ותורת המבנה שלה) מעניינות במיוחד. אומרים שלאלגברה יש גידול ריבועי אם פונקציית הגידול שלה חסומה על ידי פולינום ממעלה שנייה.

בראון וסמול שאלו האם אלגברה אפינית, ראשונית ונותרית מממד 2 היא בהכרח פרימיטיבית או מקיימת זהות פולינומית. בניסוחה זה השאלה נותרה פתוחה, אבל היא נפתרה (לחיוב או לשלילה) בכמה מקרים חשובים. לשאלה תשובה חיובית במקרים הבאים:

  • אם שדה הבסיס אינו בן-מנייה והאלגברה בעלת גידול ריבועי (במקרה זה אין צורך להניח נותריות, ומספיק להניח כי האלגברה היא Goldie).
  • אם האלגברה היא תחום מדורג.
  • אם האלגברה כמעט-סוף ממדית (במובן שכל מנה אמתית שלה היא סוף-ממדית) ופרימיטיבית למחצה.
  • אם האלגברה מוצגת סופית מונומיאלית.
  • אם האלגברה מדורגת (על ידי חבורת המספרים השלמים), נוצרת על ידי אברים מדרגות 0,1 ו-1- וכמעט כל רכיביה ההומוגניים אינם מתאפסים (במקרה זה מספיק להניח כי ממד האלגברה קטן ממש מ-3, ואף אין צורך בהנחת הנותריות).

עם זאת:

  • התשובה שלילית אם אין מניחים נותריות, ואף קיימת דוגמה כזו, מונומיאלית מגידול ריבועי (ולכן הנחת האי-התאפסות של הרכיבים ההומוגניים בטענה האחרונה אכן הכרחית).

בנוסף, סמול שאל האם תיתכנה לאלגברה נוצרת סופית, ראשונית מממד 2 הצגות אי-פריקות מממדים סופיים אך לא חסומים. לשאלה זו דוגמה נגדית (מונומיאלית, על ידי Jason Bell וסמוקטונוביץ' שגם הוכיחו כי אם הגידול ריבועי אז אלגברה מונומיאלית אינה יכולה לשמש כדוגמה נגדית עוד).

בניות

  • יש דוגמות לאלגברות אפיניות מממד שרירותי (גדול מ־2 או שווה לו). יתרה מזאת, ישנן דוגמות כאלה לאלגברות אפיניות פרימיטיביות[3] מעל כל שדה[4] ואף לאלגברות פשוטות.
  • יש דוגמה[5] לאלגברה אפינית, נילית (ובפרט אלגברית) מממד גלפנד קירילוב 3 (בפרט, זוהי דוגמה נגדית לבעיית קורוש במקרה הנילי).
  • לכל מספר ממשי הגדול או שווה ל-8, קיימת אלגברה אפינית נילית עם מספר זה בתור ממד גלפנד-קירילוב שלה.

בגאומטריה לא קומוטטיבית

כתחליף לממד קרול השווה לממד הטופולוגי של סכמות קומוטטיביות, מגדירים ממדים של סכמות לא קומוטטיביות (הגדרת הסכמה עצמה איננה עניין של מה בכך) באמצעות התאמת תחום אפיני נותרי (מעל שדה סגור אלגברית) לסכמה (למעשה הסכמה 'באה' מחוג כזה) והתבוננות בממד גלפנד קירילוב שלו. כך, ניתן להגדיר עקומים לא קומוטטיביים, משטחים לא קומוטטיביים וכן הלאה. ניתן לומר כי מיון העקומים הלא קומוטטיביים הושלם בידי סטאפורד וארטין. הדבר נעשה בהסתמך על עבודות קודמות, שמבטיחות שתחום אפיני מעל שדה סגור אלגברית מממד אחד הוא קומוטטיבי[6]. באשר למשטחים לא קומוטטיביים (או ליריעות לא קומוטטיביות מממדים גבוהים יותר) המצב שונה.

לקריאה נוספת

  • G. Krause, T.H. Lenagan Growth of algebras and Gelfand-Kirillov dimension

הערות שוליים

  1. L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI
  2. Bergman, G. M., A note of growth functions of algebras and semigroups. Mimeographed notes, University of California, Berkeley 1978
  3. W. Borho, H. Kraft Über die Gelfand-Kirillov-Dimension Math. Ann., 220 (1976), pp. 1–24
  4. Uzi Vishne, Primitive Algebras with Arbitrary Gelfand-Kirillov Dimension
  5. T. H. LENAGAN AND AGATA SMOKTUNOWICZ, AN INFINITE DIMENSIONAL AFFINE NIL ALGEBRA WITH FINITE GELFAND-KIRILLOV DIMENSION
  6. Stafford, J. T., Van den Bergh, M., Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. 38 (2001) 171–216