התפלגות F
פונקציית צפיפות ההסתברות | |
![]() | |
פונקציית ההסתברות המצטברת | |
---|---|
![]() | |
מאפיינים | |
פרמטרים | דרגות חופש |
תומך | |
פונקציית צפיפות הסתברות (pdf) | |
פונקציית ההסתברות המצטברת (cdf) | |
תוחלת |
for d2 > 2 |
ערך שכיח |
for d1 > 2 |
שונות |
for d2 > 4 |
צידוד |
for d2 > 6 |
בהסתברות וסטטיסטיקה, התפלגות F, ידועה גם כהתפלגות פישר־סנדקור היא התפלגות רציפה. התפלגות F מופיעה פעמים רבות כהשערת האפס להתפלגות לסטטיסטי המבחן במבחנים סטטיסטים, ובפרט בניתוח שונות (ראו מבחן F).
הגדרה וסימון
כאשר משתנה מקרי מקבל ערכים לפי התפלגות F עם פרמטרים ו- , נהוג לסמן זאת כך: , ופונקציית צפיפות ההסתברות שלו מוגדרת: עבור , כאשר היא פונקציית בטא. בשימושים רבים נהוג שהמשתנים ו- מקבלים מספרים שלמים חיוביים, אך הפונקציה מוגדרת היטב לערכים ממשיים חיוביים.
תכונות
משתנה מקרי עם התפלגות F ופרמטרים ו- עשוי להיות יחס של שני משתנים המתפלגים לפי כי בריבוע: כאשר:
- ו- מתפלגים לפי כי בריבוע עם ו- דרגות חופש בהתאמה
- ו- הם בלתי תלויים
ביישומים שבהם משתמשים בהתפלגות F, למשל באנליזת שונות, משתמשים לעיתים במשפט קוצ'רן כדי להראות אי־תלות של ו- .