החלק השברי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
קובץ:Mentysa.svg
הגרף של פונקציית החלק השברי

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

החלק השברי של מספר ממשי הוא המרחק בין המספר למספר השלם הקרוב ביותר שקטן או שווה לו.

מקובל לסמן את החלק השברי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} בסימונים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{x\},\langle x\rangle,\text{frac}(x)} .

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{x\}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4.7} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.7}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1.2} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.8}

החלק השברי הוא תמיד מספר בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,1)} . הפונקציה מחזירה לכל מספר נציג ששקול לו מודולו 1.

כל מספר ממשי הוא הסכום של הערך השלם שלו והחלק השברי שלו: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\lfloor x\rfloor+\{x\}} .

במקרים רבים נוח לחשוב על פונקציית החלק השברי כפונקציה המחזירה זווית. אם נחשוב על מספר ממשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} כמייצג מספר של סיבובים סביב מעגל החל מנקודה כלשהי, אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x)=2\pi\cdot\{x\}} היא הזווית (ברדיאנים) ביחס לנקודת ההתחלה שבה נעצר. לפי נוסחת אוילר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x)=\arg{(e^{2\pi ix})}} . זוהי העתקת כיסוי של הישר הממשי על המעגל (הישר הוא מרחב כיסוי אוניברסלי של המעגל).

הסתכלות זו מעוררת שאלות מעניינות. למשל כיצד מתפלג הערך השברי של סדרות מסוימות על פני המעגל. משפט הפילוג האחיד קובע שלכל מספר אי-רציונלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n=T(nx)} (המייצגת קפיצות אחידות בזווית אי-רציונלית) מתפלגת באופן אחיד (אנ') על פני המעגל.

מימוש בשפות תכנות

שפות תכנות אחדות כוללות פונקציה לקבלת החלק השברי של מספר. בפסקל עושה זאת הפונקציה frac, ובשפת C++ עושה זאת הפונקציה modf. בשפות תכנות שבהן אין פונקציה כזו, ניתן ליצור אותה בקלות באמצעות הפונקציה לקבלת החלק השלם של מספר. דוגמה בשפת PL/I:‏ Y = X - FLOOR(X).

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא החלק השברי בוויקישיתוף

החלק_השברי18067816Q2366982