מרחב פרויקטיבי ממשי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בטופולוגיה, מרחב פרויקטיבי ממשי (Real projective space) הוא מרחב פרויקטיבי מעל שדה המספרים הממשיים. המרחב הפרויקטיבי הוא משטח קומפקטי חלק -ממדי, והוא אוריינטבילי אם ורק אם הסדר שלו אי-זוגי.

הקדמה

במקרה החד-ממדי, המרחב מכונה ישר פרויקטיבי ממשי. מבחינה אינטואיטיבית נתן להתייחס אליו כישר בגאומטריה הרגילה, בתוספת נקודה מיוחדת, הנקראת הנקודה באינסוף, שאינה שוכנת על הישר, אלא כביכול בשני קצותיו ( או הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -\infty} ). הנקודה באינסוף מעניקה לכל ישר פרויקטיבי מבנה של מעגל: ישר כזה כולל את הישר המתאים מן המישור הרגיל, בתוספת נקודת האינסוף, שאינה שוכנת על הישר. בניגוד לגישה באנליזה, ונקודת האינסוף ממלאת את שני התפקידים בו-זמנית.

במקרה הדו-ממדי, אנו עוסקים במישור פרויקטיבי ממשי, הבנוי מאוסף אינסופי של ישרים פרויקטיביים (בהקבלה למישור הממשי הרגיל הבנוי מאוסף של ישרים). כל ישר פרויקטיבי, כאמור, מורכב מישר רגיל ונקודת אינסוף. אולם, במישור הפרויקטיבי הממשי, נקודת האינסוף של כל קבוצת ישרים מקבילים היא משותפת. כך, לכל כיוון ישנה נקודת אינסוף, בה נפגשים כל הישרים שהם בעלי שיפוע מסוים. כלומר, בהינתן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a\in\R} כלשהו, קבוצת כל הישרים שמשוואתם היא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bigl\{y=ax+b:b\in\R\bigr\}} , מגדירה נקודת אינסוף בכיוון זה. באופן זה נקבל שכל שני ישרים במישור הפרויקטיבי נפגשים: ישרים בעלי שיפוע שונה נפגשים בנקודה סופית, רגילה, וישרים בעלי אותו שיפוע נפגשים בנקודה אינסופית. על מנת להשלים את הבניה, ובכדי שבין כל זוג נקודות יעבור ישר, נוסיף את "ישר האינסוף", שהוא ישר מיוחד המורכב מאוסף כל נקודות האינסוף.

הגדרה

המרחב הפרויקטיבי מעל שדה הממשיים

הרחב הפרויקטיבי הממשי הוא אוסף מחלקות השקילות של הקבוצה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \R^{n+1}\setminus\{0\}} תחת זיהוי ישרים – לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda\ne0} . מתקבל מרחב, שניתן להגדיר עליו מבנה של מרחב טופולוגי, בעזרת טופולוגיית המנה.

טופולוגית

לפי היחס שהוגדר לעיל, למעשה מספיק לדבר על וקטורים מנורמה 1, היינו איברים של הספירה. היחס הנורש על הוא זיהוי נקודות אנטיפודיות, ולכן המרחב הפרויקטיבי למעשה שווה ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^n/v\sim-v} .

ניתן להמשיך ולהקטין את המרחב עליו עושים את המנה; המרחב המינימלי שאפשר לקחת הוא ההמיספירה העליונה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^n_+=\{\bar x\in S^n:x_n\ge0\}} (כולל השפה התחתונה). לכן, המרחב הפרויקטיבי שקול לדיסק הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} -ממדי בו מזהים נקודות אנטיפודיות על השפה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_n=0} .

מרחב המסלולים של ספירה

ההעתקה האנטיפודית מגדירה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Z/2\Z} -פעולה על הספירה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^n} , ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \R P^n} הוא מרחב המסלולים שלה. תחת העתקה המנה, מהווה מרחב כיסוי מסדר 2 של המרחב הפרויקטיבי.

סימונים מתחומים שונים

למרחב הפרויקטיבי מספר סימונים המגיעים מתחומים שונים.

בהתאם לסימון הסטנדרטי של מרחבים פרויקטיביים, הוא מסומן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Bbb P(\R^n)} . למרות זאת, בהקשר הטופולוגי הוא קיבל את הסימון מיוחד  ; נראה כי זהו הסימון הנפוץ ביותר. בגאומטריה אלגברית הסימן המקובל הוא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Bbb P_\R^n} .

מרחבים פרויקטיבים מממדים נמוכים

הישר הפרויקטיבי

הטלה מרכזית (perspective projection, הטלה פרספקטיבית) היא העתקה המעבירה נקודה אחת לנקודה שנייה ביחס לנקודת מוקד. על מנת לבצע הטלה מרכזית יש לבחור נקודת מוקד וטווח אליו תועתקנה הנקודות. בהינתן נקודה במרחב, נבחר את הישר המחבר אותה לנקודת המוקד (ישנו ישר יחיד כזה) ונחתוך אותו עם הטווח שלנו. נקודת החיתוך, אם ישנה כזו, היא התמונה של . בהנחות היסוד לגבי ציור בפרספקטיבה, הציור הוא הטלה פרספקטיבית של העצם המצויר. עינו של הצייר היא מוקד ההטלה ובד הציור הוא הטווח אליו מוטל מושא הציור. מסיבה זו, נהוג להתייחס לישרים העוברים בנקודת המוקד כ"כיוונים" אליהם מסתכלת נקודת המוקד.

הישר הפרויקטיבי (פרויקציה = הטלה) זכה בשמו בשל ההתאמה בין הנקודות שעליו, לכיוון ממנו רואים אותן מנקודה קבועה. לשם הפשטות, נגדיר נקודת מוקד בראשית הצירים ונגדיר את הישר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L=\bigl\{(1,y):y\in\R\bigr\}} להיות טווח ההטלה. נטיל את הנקודה אל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} ביחס לראשית הצירים. לשם כך, עלינו לחבר את הנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P} עם ראשית הצירים, על ידי הישר (הכיוון) הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L_1} . נקודת החיתוך של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L_1} עם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} היא בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (1,1)} , וזוהי תוצאת ההטלה. באופן זה ניתן להטיל כל נקודה במישור הממשי אל הטווח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} , והיא תוטל ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left(1,\tfrac{y}{x}\right)} . את הנקודות שבכיוון הציר האנכי לא נוכל להטיל אל הטווח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} . לשם כך אנו מוסיפים לטווח את נקודת האינסוף, המייצגת הסתכלות מנקודת המוקד בכיוון המקביל לישר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L} . כך קבלנו התאמה בין ישר פרויקטיבי ובין אוסף כל כיווני המבט מנקודה קבועה.

טופולוגית, לפי הזיהוי האחרון לעיל, בישר הפרויקטיבי מזהים בחצי המעגל את שתי נקודות הקצה, ולכן הוא בעצמו שקול למעגל.

מישור פרויקטיבי

המקרה המעניין הראשון והחשוב הוא המישור הפרויקטיבי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P=\R P^2} .

איור 2

המרחב הפרויקטיבי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Bbb{PR}^2} מוגדר באופן דומה. נגדיר שוב את ראשית הצירים של המרחב האוקלידי התלת-ממדי כמוקד ההטלה, ונגדיר את העל-מישור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H:=\bigl\{(x,y,1):x,y\in\R\bigr\}} כטווח ההטלה. שוב, כל נקודה הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \{(x,y,z):z\neq 0\}} תוטל אל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left(\tfrac{x}{z},\tfrac{y}{z},1\right)\in H} . כך, כל כיוון שאליו מביטים מראשית הצירים יחתך עם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H} , להוציא המישור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I:=\bigl\{(x,y,0):x,y\in\R\bigr\}} . לכן כל כיוון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L_a:=\bigl\{(x,ax,0):x\in\R\bigr\}} המוכל במישור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I} יגדיר נקודות אינסוף במישור הפרויקטיבי.

פרט להגדרות לעיל, יש לו אפיון נוסף כסכום קשיר של טבעת מביוס עם מעגל. הבחנה זו עוזרת לחשב את החבורה היסודית שלו, בעזרת משפט ואן קמפן.

מבנה כמשטח

כל מרחב פרויקטיבי הוא משטח קומפקטי חלק. אחת הדרכים לתת את הכיסוי על ידי סביבות שהומיאומורפיות למרחב ממשי הוא בעזרת כיסוי גאומטרי של המרחב על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n+1} סביבות: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^n=\cup_{i=1}^{n+1}{\mathbb{A}^n_{\mathbb{R}_{i}}}} , כאשר הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \mathbb {A} _{\mathbb {R} _{i}}=\{{\bar {x}}\in \mathbb {R} P^{n}:x_{i}\neq 0\}} - סביבה אפינית. מבנה זה אכן מגדיר מבנה של משטח, לפי ההעתקות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{A}_{\mathbb{R}_{i}} \to \mathbb{R}^n} הנתונות על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (x_1 : \dots : x_{n+1}) \to \left(\frac{x_1}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right)} . העתקות אלו חלקות, ולכן המבנה שהוגדר הוא משטח חלק.

מבנה CW

בעזרת התיאור הטופולוגי לעיל, ניתן לתת מבנה של מרחב CW ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^n} . ניעזר בשני הפירושים הטופולוגיים - ראשית, הוא דיסק הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} -ממדי תחת זיהוי נקודות אנטיפודיות על שפת ההימספירה - שהיא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^{n-1}} , וזיהוי זה בדיוק מגדיר את הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^{n-1}} . לכן מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^n = D^n \cup_f \mathbb{R}P^{n-1}} , כאשר היא ההדבקה שמגדירה את הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^{n-1}} .

לכן, בכל ממד יש תא אחד: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1=d_0=d_1=\dots=d_n} , וההדבקות בכל שלב הן בדיוק ההדבקות מהבנייה.

אינווריאנטים טופולוגיים

החבורה היסודית

כאמור לעיל, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^n} מהווה מרחב כיסוי מסדר 2 של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^n} . היות ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^n} פשוט קשר לכל , הוא מהווה מרחב כיסוי אוניברסלי של המרחב הפרויקטיבי. לכן, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi_1(\mathbb{R}P^n) = \mathbb{Z} / 2 \mathbb{Z}} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n>1} . יוצר לחבורה הוא התמונה של העתקה המהווה חצי סיבוב על הספירה בין שתי נקודות אנטיפודיות.

משיקולים אלו ניתן להוכיח שמרחב פרויקטיבי הוא אוריינטבילי אם ורק אם ממדו אי-זוגי - קרקטר האוריינטציות שלו פועל על הלולאה הסגורה כלעיל כ-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (-1)^{n+1}} , ולכן הוא טריוויאלי אם ורק אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} אי-זוגי.

חבורות ההומוטופיה

ביתר כלליות, בעזרת הסדרה המדויקת הארוכה של חבורות ההומוטופיה היחסיות המפועלת על הכיסוי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z} / 2\mathbb{Z} \to S^n \to \mathbb{R}P^n} , ניתן לחשב את כל חבורות ההומוטופיה של המרחב:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi_i (\mathbb{R}P^n) = \begin{cases} 0 & i = 0\\ \mathbb{Z} & i = 1, n = 1\\ \mathbb{Z}/2\mathbb{Z} & i = 1, n > 1\\ \pi_i (S^n) & i > 1, n > 0. \end{cases}}

חבורות ההומולוגיה

בעזרת מבנה ה-CW כלעיל ובעזרת האלגוריתם לחישוב חבורות ההומולוגיה, ניתן לחשב את כל חבורות ההומולוגיה של - הן שוות

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_i(\mathbb{R}P^n) = \begin{cases} \mathbb{Z} & i = 0 \mbox{ or } i = n \mbox{ odd,}\\ \mathbb{Z}/2\mathbb{Z} & 0<i<n,\ i\ \mbox{odd,}\\ 0 & \mbox{else.} \end{cases}}

n-מישור פרויקטיבי

n-מישור פרויקטיבי הוא סכום קשיר של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} מישורים פרויקטיביים, מסומן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle nP} . זהו משטח סגור, ויחד עם הספירות והטורוסים הוא משלים את אוסף כל המשטחים הסגורים.

למרחב זה חבורה יסודית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \langle x_1,\dots , x_n \mid x_1^2 \cdots x_n^2 = 1 \rangle} (ראו משפט ואן קמפן לפרטים); האבליניזציה שלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^{n-1}} היא חבורת ההומולוגיה הראשונה שלו, והיחידה שאיננה אפס.

מרחב זה איננו אוריינטיבילי אף פעם. באופן כללי, אף מחובר בסכום קשיר עם מרחב לא אוריינטיבילי (ובפרט, עם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P} ) איננו אוריינטבילי.

מרחב פרויקטיבי ממשי אינסוף-ממדי

המרחב הפרויקטיבי האינסופי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^\infty} הוא הגבול הישר של המרחבים הפרויקטיביים הממשיים הסוף-ממדיים. באופן זה מושרית עליו טופולוגיה, כגבול של מרחבים טופולוגיים. בדומה למקרה הסופי, הספירה האינסוף-ממדית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S^\infty} מהווה כיסוי מסדר 2 למרחב. היות שהיא כוייצה, היא מהווה כיסוי אוניברסלי. כן, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}P^\infty} הוא בעל חבורת הומוטופיה לא טריוויאלית אחת בלבד, כלומר הוא מרחב אילנברג-מקליין הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K(\mathbb{Z}/2\mathbb{Z},1)} .

ראו גם