משפט נושירו-ורשבסקי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה מרוכבת, משפט נושירו-ורשבסקי (Noshiro–Warschawski theorem) (לעיתים קריטריון נושירו-ורשבסקי) נותן תנאי הכרחי להיותה של פונקציה הולומורפית אוניוולנטית, כלומר גם חד חד ערכית, בתחום הגדרתה. ממנו נובע משפט אלכסנדר (Alexander), המדבר על פונקציות אוניוולנטיות בעיגול היחידה. המשפט נקרא על שמם של המתמטיקאים סטפן ורשבסקי ונושירו.

ניסוח

תהי פונקציה הולומורפית בתחום קמור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Omega} . המשפט קובע כי אם קיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha \in \mathbb{R}} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Re (e^{i \alpha} f'(z))>0} לכל , אז אוניוולנטית ב-, כלומר גם חד חד ערכית.

הוכחה

יהיו . נבצע אינטגרל קווי על הקו הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \gamma (t)=z_{1}+(z_{2}-z_{1})t} , המוכל בתחום כי הוא קמור. נקבל לפי המשפט היסודי:

האגף הימני שונה מאפס, כי נתון .

משפט אלכסנדר

מקרה פרטי חשוב של המשפט הנ"ל הוא:

משפט אלכסנדר: אם פונקציה הולומורפית כזו ש-, אז חד חד ערכית ב-.

דוגמה

כדי להוכיח שהפונקציה היא חד חד ערכית ב-, נשים לב ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(z)=\frac{1+z}{1-z}} ; זוהי העתקה קונפורמית ממעגל היחידה לחצי המישור הימני, ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Re(f'(z))>0} , ולכן לפי המשפט הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} חד חד ערכית.

הכרחיות התנאים והכללות

הדרישה שהתחום הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Omega} יהיה קמור היא הכרחית.

Tim הוכיח בשנת 1951 כי לכל תחום לא קמור ופשוט קשר בעל לפחות 2 נקודות שפה, קיימת פונקציה הולומורפית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} כזו ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Re (f'(z)) >0} אך היא איננה חד חד ערכית.

גודמן הוכיח גרסה כללית יותר של המשפט עבור פונקציות p-ולנטיות (לפרטים ראו בקריאה נוספת):

משפט: אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f : \Omega \to \mathbb{C}} פונקציה הולומורפית בתחום קמור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Omega} , וקיים מספר טבעי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} ומספר ממשי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \forall z \in \Omega: Re(e^{i \alpha} f^{(p)}(z))>0} , אז הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} היא לכל היותר p-ולנטית ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Omega} .

ראו גם

לקריאה נוספת

  • Goodman, A.W. (1983). Univalent functions. Univalent Functions 1. Mariner Pub. Co.. ,pages 88-93