עקרון ההערכה של דוביי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Gnome-colors-edit-find-replace.svg
יש לשכתב ערך זה. ייתכן שהערך מכיל טעויות, או שהניסוח וצורת הכתיבה שלו אינם מתאימים.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. אם אתם סבורים כי אין בדף בעיה, ניתן לציין זאת בדף השיחה.

עקרון ההערכה של דוביי הוא מושג בתחום תורת המשחקים.

ערך שפלי מקיים את העקרונות הבאים: יעילות, סימטריה, שחקן אפס וחיבוריות. כיוון שהמוטיבציה של העקרון האחרון אינה משכנעת, ובמקרים רבים לא ברור מדוע עקרון זה סביר, ישנם איפיונים נוספים לערך שפלי שאינם משתמשים בעקרון החיבוריות.

תנאים: תהי קבוצת המשחקים הפשוטים המונוטונים שמשתתפים בהם N שחקנים.(משחק נקרא מונוטוני אם לכל שתי קואליציות ו-, , מתקיים: ). מכיוון שסכום של משחקים ב אינו ב , עקרון החיבוריות אינו מתאים למשפחה זאת.

לשם כך הגדיר Dubey בשנת 1975 את עקרון ההערכה (valuation axiom) הבא: מושג פתרון עבור המשפחה מקיים את עקרון ההערכה אם לכל שני משחקים (N;v) ו-(N;w) ב מתקיים:

כאשר:

  1. לכל שני משחקים על אותה קבוצת שחקנים (N;v) ו-(N;w) נגדיר את משחק המקסימום :

  1. נגדיר את משחק המינימום :

ערך שפלי הוא מושג הפתרון היחיד עבור המשפחה המקיים את עקרונות היעילות, הסימטריה, שחקן האפס וההערכה.

לקריאה נוספת