הקבוצה הנגזרת

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף קבוצה מושלמת)
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

בטופולוגיה, הקבוצה הנגזרת של קבוצה במרחב טופולוגי היא קבוצת כל נקודות ההצטברות שלה. מקובל לסמן את הקבוצה הנגזרת ב-. את המושג הגדיר גאורג קנטור ב-1872. במידה רבה, הוא פיתח את תורת הקבוצות כדי לחקור את הנגזרות של קבוצות בישר הממשי.

תכונות

הסגור של קבוצה במרחב טופולוגי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} הוא הקבוצה הסגורה הקטנה ביותר המכילה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . באופן שקול, הוא שווה לאיחוד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \overline{A} = A \cup A'} . ברור כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} סגורה אם ורק אם היא שווה לסגור שלה, ולכן נובע כי זה קורה אם ורק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A' \subseteq A} .

קיימות קבוצות שהקבוצה הנגזרת שלהן ריקה, אלה הקבוצות שנקודותיהן מבודדות. בצד השני קיימות קבוצות השוות לקבוצה הנגזרת שלהן, אלה מכונות קבוצות מושלמות, ואלה קבוצות ללא אף נקודה מבודדת. במרחב טופולוגי המקיים את אקסיומת ההפרדה T1, כלומר כזה שבו כל היחידונים סגורים, כל קבוצה נגזרת היא סגורה. בפרט כל קבוצה מושלמת במרחב כזה היא סגורה.

"קבוצה דקה" (meager set) היא קבוצה שאפשר להציג כאיחוד בן מניה של קבוצות בעלות נגזרת ריקה.

אופרטור הנגזרת קובע את הטופולוגיה

שני מרחבים טופולוגיים הם הומיאומורפיים אם יש העתקה רציפה וחד־חד־ערכית מהראשון על משנהו, שהיא גם פתוחה, כלומר מעבירה את הקבוצות הפתוחות מן המרחב הראשון אל הקבוצות הפתוחות בשני. אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} הומאומורפיזם אז לכל קבוצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} בתחום של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(A') = f(A)'} . מתברר שבמרחב המקיים אקסיומת הפרדה T1 גם ההפך נכון: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} פונקציה חח״ע ועל המקיימת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(A') = f(A)'} , אז היא הומאומורפיזם. זאת כי במרחב כזה, קבוצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} היא פתוחה אם ורק אם היא זרה לקבוצה הנגזרת של משלימתה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( U^{\complement} \right)'} .

אופרטור הנגזרת מקיים את התכונות הבאות:

  1. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{''} \subseteq S^'}
  2. לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in S'} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in (S \setminus \{a\})^'}
  3. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (S \cup T)^' \subseteq S^' \cup T^'}
  4. אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S \subseteq T} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^' \subseteq T^'}
  5. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S'\backslash T'\subseteq\left(S\backslash T\right)'}
  6. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\bigcup_{i\in I}S_{i}\right)'\supseteq\bigcup_{i\in I}S_{i}'}
  7. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\bigcap_{i\in I}S_{i}\right)'\subseteq\bigcap_{i\in I}S_{i}'}

דרגת קנטור-בנדיקסון

לכל מספר סודר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} אפשר להגדיר את נגזרת קנטור-בנדיקסון מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} של מרחב טופולוגי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} , באינדוקציה טרנספיניטית:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{0} = X} .
  • לכל סודר עוקב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} .
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{\alpha} = \bigcap_{\beta < \alpha} X^{\beta}} לכל סודר גבולי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} .

סדרת הנגזרות של כל מרחב טופולוגי היא יורדת ומוכרחה לעצור בסופו של דבר (ייתכן שהיא תסתיים בקבוצה הריקה). הסודר הקטן ביותר שעבורו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{\alpha+1} = X^{\alpha}} נקרא דרגת קנטור-בנדיקסון של המרחב. המרחבים המושלמים הם אלו שהדרגה שלהם היא 0.

משפט קנטור-בנדיקסון קובע שכל קבוצה סגורה במרחב פולני ניתנת לפירוק יחיד כאיחוד של שתי קבוצות: האחת בת מניה והאחרת היא קבוצת נקודות ההתעבות (אנ') שלה. בפרט נובע שבמרחב פולני, כל קבוצה סגורה היא מושלמת. למעשה המשפט קובע שדרגת קנטור-בנדיקסון של כל מרחב פולני היא בת-מניה. משפט זה שקול לאקסיומת הבחירה, וקבוצת ברנשטיין מהווה דוגמה נגדית במודל ללא אקסיומת הבחירה.

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

הקבוצה הנגזרת31091823Q322340