קריטריון לי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, במיוחד בתורת המספרים, קריטריון לי על שם שיין-ין לי (Xian-jin li), היא טענה שנכונותה שקולה לנכונות השערת רימן. הטענה הוצגה לראשונה בשנת 1997 על ידי לי, והוכללה בשנת 1999 על ידי אנריקו בומביירי וג'אפרי לאגאנריס.

הטענה

נגדר את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_n} בדרך הבאה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_n = \frac{1}{(n-1)!} \left. \frac{d^n}{ds^n} \left[s^{n-1} \log \xi(s) \right] \right|_{s=1}}

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi} היא פונקציית קסי של רימן. קריטריון לי היא הטענה הבאה:

"השערת רימן שקולה לטענה שלכל n שלם, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_n > 0} ".

ניתן גם להגדיר את המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_n} על ידי השורשים הטריביאלים של פונקציית זטא של רימן.

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_n=\sum_{\rho} \left[1- \left(1-\frac{1}{\rho}\right)^n\right]}

כאשר הסכום מוגדר עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} , השורשים הלא טריביאליים של פונקציית זטא של רימן. טור זה מתכנס בתנאי, וניתן להבין ממנו כי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_\rho = \lim_{N\to\infty} \sum_{|\Im(\rho)|\le N}} .

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

קריטריון לי36031163Q6538608