תכונת ארכימדס

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
אם מניחים עותקים של קטע קצר בזה אחר זה, בסופו של דבר אפשר יהיה לעבור קטע אחר הארוך ממנו
התכונה קרויה על שם ארכימדס.

במתמטיקה, תכונת ארכימדס היא תכונה של מבנה אלגברי סדור, כמו חבורה סדורה או שדה סדור: המבנה מקיים את תכונת ארכימדס אם קבוצת המספרים הטבעיים הנמצאת בו אינה חסומה: לכל איבר x יש מספר טבעי n הגדול ממנו. במילים אחרות, מספר השייך למבנה אינו יכול להיות גדול מכל המספרים הטבעיים - 'גדול עד אינסוף'; בדרך כלל נובע מכך גם שמספר חיובי השייך למבנה אינו יכול להיות 'קטן עד אינסוף'. שדה המקיים תכונה זו נקרא שדה ארכימדי. לדוגמה, השדה הממשי הוא שדה ארכימדי, בעוד שהשדה של טורי לורן מעל השדה הממשי, אינו ארכימדי.

התכונה קרויה על שם ארכימדס מסירקוזה, שקבע שניתן להשוות כל שני קטעים ממשיים: אם מניחים עותקים של הקטע הקצר בזה אחר זה, בסופו של דבר אפשר יהיה לעבור את הקטע הארוך (ארכימדס ייחס קביעה זו לאאודוקסוס). התכונה מופיעה בספר הרביעי מספרי ה"יסודות" של אוקלידס. בניסוח מודרני, זוהי בדיוק תכונת הארכימדיות של השדה הממשי.

תכונת ארכימדס מופיעה בהקשר אחר, של הערכות מוחלטות, ושם יש לה מובן שונה (אם כי קרוב ברוחו למובן המוצג כאן).

ראו גם

קישורים חיצוניים

ויקישיתוף ראו מדיה וקבצים בנושא זה בוויקישיתוף.

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0