כוח מרכזי

מתוך המכלול, האנציקלופדיה היהודית
גרסה מ־14:09, 3 ביוני 2020 מאת שרגא (שיחה | תרומות) (עידכון מויקיפדיה גירסה 28293859)
קפיצה לניווט קפיצה לחיפוש

בפיזיקה, כוח מרכזי הוא כוח שגודלו תלוי רק במרחק ממקור הכוח, וכיוונו רדיאלי, כלומר ככיוון הוקטור המחבר בין מקור הכוח לבין הנקודה עליה פועל הכוח.

מתמטית, אם מקור הכוח נמצא בראשית הצירים, אזי הכוח הפועל על נקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec r } יהיה מן הצורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec F (\vec r) = F(r)\hat r } כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=|\vec r| } הוא המרחק מהראשית (מקור הכח).
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat r = \frac{\vec r}{r} } הוא וקטור יחידה בכיוון רדיאלי.

כוחות רבים וחשובים דוגמת כוח הכבידה והכוח הקולומבי האלקטרוסטטי הם כוחות מרכזיים. הכוח המגנטי הוא דוגמה לכוח שאינו מרכזי, כיוון שכיוונו אינו רדיאלי וגודלו תלוי במהירות הגוף עליו הוא פועל.

כוח מרכזי הוא מאפיין של מערכת פיזיקלית בעלת סימטריה לסיבוב.

תכונות

  • כוח מרכזי הוא כוח משמר. כלומר:
    • האנרגיה של גוף הנע בהשפעת כח מרכזי משתמרת.
    • את הכוח ניתן לגזור מתוך אנרגיה פוטנציאלית על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec F =-\vec\nabla V(r) } . הפוטנציאל תלוי אף הוא אך ורק במרחק ממקור הכוח ומכונה לפיכך פוטנציאל מרכזי.
  • כאשר גוף נע בהשפעת כוח מרכזי התנע הזוויתי שלו משתמר. הגוף ינוע במישור הניצב לכיוון וקטור התנע הזוויתי.

פתרון משוואות התנועה הקלאסיות עבור כוח מרכזי

בזכות תכונות אלו, בעיה של גוף הנע בהשפעת כוח מרכזי קלה יחסית לפתרון. כיוון שתנועת הגוף מוגבלת למישור נוח לעבוד בקואורדינטות פולריות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r,\theta } . כיוון שהאנרגיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E } והתנע הזוויתי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec L} קבועים, ניתן לכתוב: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = \frac{1}{2} m \dot r^2 +\frac{L^2}{2mr^2} +V(r) }

כלומר ניתן להתייחס לתנועת הגוף (בקואורדינטה r) כתנועה חד ממדית בהשפעת פוטנציאל אפקטיבי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_\mbox{eff}(r) = V(r) +\frac{L^2}{2mr^2} } . את המשוואה הנ"ל ניתן לפתור ברמת העקרון על ידי הפרדת משתנים ולקבל את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r(t) } (אם כי רק עבור מספר מצומצם של פוטנציאלים ידוע הפתרון בצורה מפורשת). לאחר מכן ניתן לקבל את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \theta (t) } על ידי אינטגרציה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\theta = \frac{L}{mr^2} } .

משוואת המסלול

בנוסף למשוואות התנועה שפתרונן הוא מיקום הגוף כפונקציה של הזמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r(t) , \theta (t) } , במקרים רבים נהוג להתעניין גם במשוואת המסלול שפתרונה נותן את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r(\theta) } כלומר את צורת מסלול הגוף במישור בו הוא נע. לדוגמה, עבור בעיית קפלר שהיא בעיית כוח מרכזי עבור כוח הכבידה, המסלולים האפשריים הם החתכים הקוניים - אליפסה, פרבולה או היפרבולה, אותם ניתן לכתוב כ:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r(\theta) = \frac{r_0}{1+\epsilon \cos\theta} } . משוואת המסלול עבור בעיית כוח מרכזי כללי נתונה על ידי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {l}{r^2}\frac{d}{d\theta}\left(\frac{l}{mr^2}\frac{dr}{d\theta}\right) - \frac{l^2}{mr^3}=F(r) } את המשוואה האחרונה ניתן לפשט על ידי החלפת המשתנה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u = 1/r } . המשוואה המתקבלת עבור המשתנה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u } היא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{l^2 u^2}{m}\left(\frac{d^2 u}{dt^2} +u \right) = - F\left(\frac{1}{u}\right)}

פוטנציאל מרכזי בתורת הקוונטים

ההמילטוניאן עבור גוף הנע בהשפעת פוטנציאל מרכזי הוא מן הצורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} = \frac{\vec p^2}{2m} + V(r) } במקרה זה אופרטורי התנע הזוויתי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L^2 , L_x, L_y, L_z } חילופיים עם ההמילטוניאן, ולפיכך ניתן למצוא בסיס של מצבים עצמיים משותפים להמילטוניאן, לתנ"ז הכולל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L^2 } ולאחר מרכיבי התנ"ז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L_z } . נהוג לסמן מצבים אלו ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n,l,m\rangle } והם מקיימים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_z |n,l,m\rangle = \hbar m |n,l,m\rangle }

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^2 |n,l,m\rangle = \hbar^2 l(l+1) |n,l,m\rangle}

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}|n,l,m\rangle = E_{n,l} |n,l,m\rangle }

האנרגיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E_{n,l} } אינו תלויה במספר הקוונטי m (כלומר בכיוון התנע הזוויתי), אי לכך יש ניוון של (לפחות) הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2l+1 } באנרגיה.

פונקציית הגל של המצב תהיה מן הצורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\vec r) = R_{n,l} (r) Y_{l,m}(\theta,\phi) } , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Y_{l,m}(\theta,\phi) } היא הפונקציה הספרית הרמונית, והפונקציה הרדיאלית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ R_{n,l}(r) } היא פתרון של המשוואה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left [ -\frac{\hbar^2}{2m} \Biggl(\frac{\partial^2 }{\partial r^2} + \frac{2}{r} \frac{\partial }{\partial r} - \frac{ l(l+1)}{r^2}\biggr) +V(r)\right ]R(r) = E_{n,l}R(r) }

לקריאה נוספת

  • H. Goldstein, Classical Mechanics
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

כוח מרכזי28293859