בסיס אונארי

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף בסיס אונרי)
קפיצה לניווט קפיצה לחיפוש

ספירה על בסיס אונרי היא בסיס ספירה לפי 1. זו שיטת הספירה הפשוטה ביותר לייצוג המספרים הטבעיים: כדי לייצג מספר טבעי כלשהו - N, סמל כלשהו יחזור על עצמו N פעמים. לדוגמה: על ידי שימוש בסימן | (קו אנכי), המספר 6 מיוצג על ידי שישה קווים אנכיים ||||||. דוגמה נפוצה לספירה באמצעות בסיס אונרי, היא ספירה באמצעות אצבעות הידיים.

מידע כללי

שיטות שונות לרשום את המספר 8 בבסיס אונרי

לרוב נהוג לקבץ את הסימנים בקבוצות של 5 (למשל, על ידי מתיחת קו על כל ארבעה סימנים) לצורך שיפור הקריאות, בדומה לשימוש בפסיקים הנפוץ בשיטה העשרונית כדי להפוך מספרים גדולים דוגמת 100,000,000 לקריאים יותר.

חיבור וחיסור הם פשוטים למדי בשיטה האונרית - כדי לחבר שני מספרים פשוט צריך לצרף את סדרות הסימנים שמייצגות את שני המספרים יחד. כדי לבצע חיסור די לכתוב את המחוסר מעל המחסר ולמחוק את החלק המשותף. לעומת זאת, חילוק וכפל הם מסובכים וקשים יותר לביצוע.

בשיטה האונרית אין סימן מוסכם המשמש לייצוג אפס כפי שקיים בבסיסי הספירה האחרים - אם הייתה ספרה עבור אפס, הבסיס היה למעשה בינארי, שכן היה מכיל שתי ספרות. לכן לאפס מתייחסים בצורה עקיפה, על ידי אי כתיבת מספר במקום שבו מצפים שיופיע. הדבר אינו ייחודי לשיטה האונרית - גם בשיטות ספירה מתקדמות יחסית דוגמת הספרות הרומיות אין סימן לאפס.

בהשוואה לשיטות ספירה המבוססות על מיקום, שיטת הספירה האונרית היא מסורבלת ולא משתמשים בה עבור חישובים גדולים. עם זאת, לעיתים משתמשים בה במדעי המחשב לתיאור בעיות מסוימות, וזאת על מנת להגדיל באופן "מלאכותי" את גודל הקלט של הבעיה, ובכך להפוך אותה לשייכת למחלקה P.

לדוגמה, הבעיה של פירוק מספר לגורמים דורשת, ככל הידוע, זמן ריצה שהוא יותר מאשר פולינומי בגודל הקלט כאשר הקלט הוא מספר הנתון בבסיס בינארי, וגודל הקלט נמדד על פי מספר הספרות (ולכן הוא לוגריתם על בסיס 2 של המספר עצמו שהועבר). לעומת זאת, אם המספר יועבר בבסיס אונרי, זמן הריצה יהיה לינארי בגודל הקלט (שיהיה שווה במקרה זה לגודל המספר). בצורה זו לא נחסך זמן, אלא פשוט נבחרת דרך אחרת למדוד בה את הסיבוכיות של הבעיה.

ראו גם

קישורים חיצוניים

ויקישיתוף ראו מדיה וקבצים בנושא זה בוויקישיתוף.


סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0