טור חזקות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

טוּר חֲזָקוֹת הוא טור הבנוי כסכום של חזקות מ־0 עד אינסוף של נעלם. טורי חזקות יכולים לתאר כל פונקציה אנליטית ומשמשים באנליזה מתמטית, לחישוב ערכן של פונקציות אנליטיות, בגלל הפשטות שבחישוב כל אחד מאברי הטור הדורשת אך ורק שימוש בארבע פעולות החשבון.

הגדרה

טור חזקות הוא טור פונקציות מהצורה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=\sum_{n=0}^\infty a_n(x-c)^n} כאשר סדרה של מקדמים (לרוב אלו מספרים ממשיים או מרוכבים), ו־הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c} הנקודה שסביבה מפותח הטור.

רדיוס התכנסות

תכונה חשובה של טורי חזקות במספרים ממשיים או מרוכבים המבדילה אותן מטורי פונקציות אחרים היא קיום רדיוס התכנסות לטור חזקות.

אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=\sum_{n=0}^\infty a_n(x-c)^n} הוא טור חזקות, אז קיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0\le r\le\infty} כך שלכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |x-c|<r} הטור מתכנס בהחלט, ולכל תת־קבוצה קומפקטית של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bigl\{|x-c|<r\bigr\}} הטור מתכנס במידה שווה. כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r=\infty} הטור מתכנס נקודתית עבור כל מספר, והוא מתכנס במידה שווה על כל המרחב אם ורק אם הטור הוא פולינום. אחרת, הטור מתכנס במידה שווה רק על קבוצות חסומות בו.

על המעגל, או שתי הנקודות במקרה הממשי, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |x-c|=r} לא ניתן בוודאות לומר האם הטור מתכנס או מתבדר (קיימות דוגמאות לכאן ולכאן).

רדיוס ההתכנסות של טור חזקות נתון על ידי נוסחת קושיאדמר: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac1r=\limsup_{n\to\infty}\sqrt[n]{|a_n|}} (אם הגבול הוא 0, הטור מתכנס תמיד). נוסחה זו תמיד מניבה את הרדיוס המבוקש, אך לעיתים קשה לחשב אותה. נוסחת ד'אלמבר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r=\lim_{n\to\infty}\left|\frac{a_{n}}{a_{n+1}}\right|} נכונה כאשר הגבול קיים (סופי או אינסופי), ולעיתים היא קלה יותר לחישוב.

פעולות על טורי חזקות

חיבור וחיסור

סכום שני טורי חזקות הוא טור החזקות שמקדמיו הם סכום המקדמים של הטורים המחוברים, בדומה לטורי פונקציות רגילים:

מכפלה

מכפלת טור חזקות בקבוע היא טור החזקות שמקדמיו הם מכפלת הקבוע בטור החזקות המוכפל:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c\cdot\sum_{n=0}^\infty a_nx^n=\sum_{n=0}^\infty c\cdot a_nx^n}

מכפלת שני טורים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\left(\sum_{n=0}^\infty a_n(x-c)^n\right)\left(\sum_{n=0}^\infty b_n(x-c)^n\right)=\sum_{n=0}^\infty\sum_{k=0}^\infty a_nb_k(x-c)^{n+k}=\sum_{n=0}^\infty\left(\sum_{k=0}^na_kb_{n-k}\right)(x-c)^n}}

גזירה ואינטגרציה

בתוך תחום ההתכנסות ניתן לגזור את טורי החזקות אבר־אבר, וכן גם לבצע עליהם אינטגרציה אבר־אבר:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align}\left(\sum_{n=0}^\infty a_n(x-c)^i\right)'(x)=\sum_{n=1}^\infty na_n(x-c)^{n-1}\\\int\sum_{n=0}^\infty a_n(x-c)^ndx=\sum_{n=0}^\infty\frac{a_n(x-c)^{n+1}}{n+1}+C\end{align}}

שימושים

השימוש הנפוץ של טורי חזקות הוא לתיאור של פונקציות אנליטיות. אם פונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)} היא אנליטית בנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c} , אז מקדמי טור החזקות סביב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c} שמתאר את הפונקציה בסביבת הם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_n=\frac{f^{(n)}(c)}{n!}} . כלומר, טור החזקות המתאר את הפונקציה הוא טור טיילור שלה באותה נקודה. ניתן להראות שכל תיאור של פונקציה באמצעות טור חזקות יהיה טור טיילור.

במישור המרוכב, רדיוס ההתכנסות של טור חזקות שמתאר פונקציה הולומורפית סביב נקודה מסוימת, הוא רדיוס המעגל המקסימלי סביב אותה נקודה, שלא מכיל אף נקודה סינגולרית.

ניתן להכליל את מושג טורי החזקות כדי לתאר פונקציות שאינן אנליטיות בנקודה, אך אנליטיות בסביבתה, על ידי טורי לורן.

טורי חזקות פורמליים

באלגברה מופשטת ובקומבינטוריקה, משתמשים בטורי חזקות פורמליים ככלי חישובי, כאשר בתחומים אלו אין עניין של התכנסות טורי החזקות, והם מוגדרים רק בשביל האריתמטיקה המיוחדת שלהם. בקומבינטוריקה הטורים מכונים פונקציות יוצרות. הפונקציות היוצרות משמשות כמעט רק לספירת עצמים, על ידי מקדמי החזקות המתאימות, ולכן בדרך כלל אין חשיבות להתכנסות הטורים. כך למשל, טור החזקות הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \sum _{n=1}^{\infty }n!x^{n}} המתבדר לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x\ne0} הוא פונקציה יוצרת לגיטימית.

דוגמאות

הפונקציה האקספוננטית

הפונקציה האקספוננטית ניתנת להצגה כטור חזקות: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e^x=\sum_{n=0}^\infty\frac{x^n}{n!}}

ניתן להראות שהתכונה הבסיסית של הפונקציה – העברת חיבור לכפל, נובעת ישירות מאופן הפעולה של הכפל על טורים ומהבינום של ניוטון. גם את הנוסחה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(e^{ax})=ae^{ax}} אפשר לקבל ישירות מאופן הפעולה של הנגזרת על טורי החזקות. תכונות אלו ניתן להרחיב גם לחוגים ולאלגבראות בנך באופן כללי, אם כי התכונה הראשונה תלויה בקומוטטיביות של המכפלה, ולא מתקיימת באופן כללי.

פונקציית סינוס

פונקציית הסינוס ניתנת להצגה כטור חזקות: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sin(x)=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n-1)!}x^{2n-1}}

פונקציה רציונלית

טור החזקות שמקדמיו שווים ל־1 מתכנס לפונקציה: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{1}{1-x}=\sum_{k=0}^\infty x^k}

ובמקרה זה טור החזקות מתכנס עם רדיוס התכנסות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r=1} כפי שניתן להוכיח בקלות בעזרת משפט דאלמבר שלעיל.

טורים נוספים

לעיתים ניתן למצוא את הפונקציה שאליה מתכנס טור חזקות נתון על ידי ביצוע מניפולציות על הטור הנתון כדי להגיע לטור שידוע לאיזו פונקציה הוא מתכנס, ולאחר מכן ביצוע מניפולציות הפוכות על הפונקציה שהתקבלה, לקבלת הפונקציה שאליה מתכנס הטור המקורי.

קישורים חיצוניים

ויקישיתוף ראו מדיה וקבצים בנושא זה בוויקישיתוף.


סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0