מעוות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
קובץ:Hook1.jpg
מאמץ - מעוות במערכת צירים קרטזית
קובץ:Stress-Strain diagram.svg
דיאגרמת מאמץ-מעוות סכמטית. הקו הישר הכחול מציין את התחום האלסטי. העקומה הירוקה מציינת את התחום הפלסטי. נקודת השבירה מצוינת באדום

מַעֲוות הוא השינוי הגאומטרי החל בגוף הנתון תחת מאמץ. מעוות יכול להיות אחיד (הומוגני) בכל חלקי הגוף או בלתי אחיד. הביטוי הכללי למעוות הוא טנזור מעוות סימטרי. לרוב מתייחסים למעוות היחסי שהוא ערך חסר יחידת מידה המגדיר את השינוי ביחס לערך הראשוני לפני הפעלת המאמץ. בתחום האלסטי של החומר, הקשר בין המאמץ לבין המעוות נתון על ידי חוק הוק ומתואר באופן גרפי על ידי קו ישר. התחום הפלסטי של חומר מתאפיין בהשתנות שאינה ליניארית, ובמעוות שיורי שנותר לאחר הסרת העומס. דיאגרמת מאמץ - מעוות נותנת ערך נסיוני למעוות היחסי כתלות במאמץ הפועל על דגם של החומר הנבדק. המעוות היחסי מסומן באמצעות האות היוונית אפסילון (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} ).

מעוות יחסי במוט

כאשר המוט מתארך במאמץ מתיחה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \ell} הוא בעל ערך חיובי וכך גם המעוות היחסי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . כאשר המוט מתקצר במאמץ לחיצה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \ell} בעל ערך שלילי וגם המעוות היחסי בעל ערך שלילי. האורך הראשוני של המוט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell_o} הוא ערך חיובי.

המעוות היחסי כתוצאה ממאמץ הגורם לשינוי אורך של מוט נתון על ידי הביטוי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon = \frac {\delta \ell}{\ell_o} = \frac {\ell - \ell_o}{\ell_o}}

כאשר

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} - המעוות היחסי
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell_o} - האורך הראשוני של המוט
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} - האורך הנוכחי של המוט
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \ell} - שינוי האורך של המוט

מעוות צירי ליניארי

הביטוי למעוות היחסי בנקודה כלשהי בגוף מתקבל מהשינוי היחסי במרחק בין שתי נקודות:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon = \mathop {\lim_{\ell \to 0}} \frac {{\delta} {\ell} } {\ell} }

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} - המעוות היחסי
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{\delta} {\ell} }} - שינוי המרחק בין שתי נקודות קרובות
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} - המרחק הנוכחי בין שתי נקודות קרובות לאחר הפעלת המאמץ

באופן כללי נגדיר את המעוות הליניארי בגוף על ידי שינוי המרחק בין שתי נקודות בגוף שנסמן אותן באופן אקראי על ידי A,B.

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_x = \mathop {\lim_{B \to A}}{{|AB'|-|AB|} \over {|AB|}}}

לשדה כלשהו של תזוזות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow u} המעוות הליניארי נתון על ידי הנגזרות החלקיות:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_x = {{\partial u_x} \over {\partial x}}}  ; הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_y = {{\partial u_y} \over {\partial y}}}  ; הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_z = {{\partial u_z} \over {\partial z}}}

כאשר

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_i } - מעוות בכיוון ציר "i"
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{\partial u_i} \over {\partial i}}} - הנגזרת החלקית של שדה התזוזותהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow u} בנקודה כלשהי בכיוון ציר i

מעוות גזירה

קובץ:Strain02.GIF

מעוות הגזירה מוגדר כשינוי הזוויתי בנקודה כלשהי בגוף בין שני קווים העוברים דרך הנקודה.

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{xy} = {{\partial u_x} \over {\partial y}} + {{\partial u_y} \over {\partial x}}}  ; הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{yz} = {{\partial u_y} \over {\partial z}} + {{\partial u_z} \over {\partial y}}}  ; הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{xz} = {{\partial u_x} \over {\partial z}} + {{\partial u_z} \over {\partial x}}}

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \gamma_{ij}} - המעוות הזוויתי היחסי

מעוות נפחי

המעוות הליניארי ומעוות הגזירה מגדירים באופן מלא את המעוות שעובר הגוף. ניתן להגדיר גם מעוות ניפחי

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta = \lim_{V^{(0)} \to 0}{V - V^{(0)} \over {V^{(0)}}}}

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta} - מעוות נפחי יחסי
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^{(0)}\!} - הנפח ההתחלתי
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} - הנפח הסופי לאחר הפעלת המאמץ

במערכת קואורדינטות ישרת זווית (קרטזית) המעוות הנפחי היחסי הוא בקרוב:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta = \varepsilon_x + \varepsilon_y + \varepsilon_z}

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta} - מעוות נפחי יחסי
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_x , \varepsilon_y , \varepsilon_z} הם מעוותים יחסיים בכיוון הצירים x, y, z

טנזור מעוותים

קובץ:Strain01.GIF

נבטא את המעוותים בצורה של טנזור:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_{ij} = {1 \over 2} \left({\nabla_i u_j + \nabla_j u_i}\right)}

בסימון של אינדקסים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon = {1 \over 2} ( \vec{\nabla}\vec{u} + (\vec{\nabla}\vec{u})^T)}

במערכת קואורדינטות ישרת זווית:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_{ij}= \left[{\begin{matrix} {\varepsilon _x } & \frac {\gamma _{xy} } {2} & \frac {\gamma _{xz} } {2} \\ \frac {\gamma _{yx} } {2} & {\varepsilon _y } & \frac {\gamma _{yz} } {2} \\ \frac {\gamma _{zx} } {2} & \frac {\gamma _{zy} } {2} & {\varepsilon _z } \end{matrix}}\right] }

המעוות הנפחי הוא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta = \varepsilon_{ij}g^{ij}}
gij הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta = tr(\varepsilon)}

נכתוב טנזור מעוותים דו ממדי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_{ij}= \left[{\begin{matrix} {\varepsilon _x } & {\frac {\gamma _{xy}} {2}} \\ {\frac {\gamma _{xy}} {2}} & {\varepsilon _y } \\ \end{matrix}}\right] }

המעוותים הראשיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon _1, \varepsilon _2}

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon _1 = \frac {\varepsilon _x + \varepsilon _ y}{2} + \sqrt{ \left( \frac {\varepsilon _x - \varepsilon _y}{2} \right)^2 + \left( \frac{\gamma _{xy}} {2}\right)^2 }}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon _2 = \frac {\varepsilon _x + \varepsilon _ y}{2} - \sqrt{ \left( \frac {\varepsilon _x - \varepsilon _y}{2} \right)^2 + \left( \frac{\gamma _{xy}} {2}\right)^2 }}

לקריאה נוספת

  • Timoshenko S.P, Strength of Materials, 3rd edition, Krieger Publishing Company, 1976.
  • Sybil P. Parker Editor in Chieh. McGraw-Hill Encyclopedia of Engineering, McGraw Hill Book Company 1983.
  • S.P. Timoshenkoo & J.N. Goodier Theory of Elasticity, 3rd edition, International Student Edition, McGraw-Hill 1970.
  • Shames I.H., Cozzarelli F.A., Elastic and inelastic stress analysis, Prentice-Hall, 1991.

קישורים חיצוניים


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

מעוות35246355Q193514