משוואת החום

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Gnome-colors-edit-find-replace.svg יש לשכתב ערך זה. הסיבה לכך היא: כתוב כמו דף מספר לימוד, ללא הסבר אמיתי של המושג, חשיבותו ושימושיו.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. אם אתם סבורים כי אין בדף בעיה, ניתן לציין זאת בדף השיחה.
קובץ:Heatequation exampleB frames.svg
תצוגה גרפית לפתרון משוואת הולכת החום בממד אחד. (לחצו כאן לאנימציה)

משוואת החום (או משוואת הולכת החום וכן משוואת הדיפוזיה) היא משוואה דיפרנציאלית חלקית, המתארת את האופן שבו זורם חום בגוף מרחבי לאורך זמן. המשוואה הוצגה לראשונה על ידי ז'אן-בטיסט ז'וזף פורייה בתחילת המאה ה-19. המשוואה נקראת גם משוואת הדיפוזיה שכן היא מתארת באופן כללי פעפוע של חומר בזמן ובמרחב.

כמשוואה דיפרנציאלית חלקית, ניתן להגדיר פונקציה או משטח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u} ולו תנאי שפה ותנאי התחלה מתאימים, כלומר: מהם מקורות החום בזמן (תחילת התהליך) ומהם מקורות החום הקבועים על שפות הפונקציה. לאחר מכן, על ידי פתרון משוואת החום, ניתן לדעת מהו פילוג החום המתקבל בזמן עתידי כלשהו לפי הצורך.

לדוגמה, אם נרצה לתאר את פילוג החום עבור לוח בגודל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L\times L} אשר בצלעו הימנית נמצא מקור חום קבוע, וברגע בפינה השמאלית העליונה ישנו מקור חום נקודתי, ראשית נגדיר את המשטח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(x,y,t)} . כעת נציב את תנאי השפה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(L,y,t)=h} ואת תנאי ההתחלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(x,y,0)=\delta(x,y)} כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h} הוא עצמת מקור החום הקבוע ו-הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \delta (x,y)} הינה פונקציית דלתא של דיראק. עם קבלת פתרון המשוואה, נוכל למשל לדעת מהו פילוג החום ברגעים , וכן הלאה.

הגדרה

בצורתה המלאה, המשוואה נכתבת כך:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial t} = \nabla \cdot \bigg( \alpha(u,\vec{r}) \, \nabla u(\vec{r},t) \bigg) }

כאשר:

  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \, t} – הזמן
  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \, \vec{r}}וקטור המתאר מקום במרחב.
  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \, u} – הטמפרטורה כפונקציה של המיקום בגוף והזמן
  • αמקדם הדיפוזיה התרמית של החומר
  • ∇ – אופרטור הגזירה הווקטורי, דל.

בדרך כלל מתייחסים למקדם הדיפוזיה כאל קבוע במרחב ובטמפרטורה, ואז אפשר לכתוב:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial t} =\alpha\nabla^2 u (\vec{r},t) }

כאשר 2 הוא אופרטור הלפלסיאן, המשתנה כתלות המערכת הצירים. לדוגמה, במערכת צירים קרטזית, משוואת הולכת החום נראית כך:

כאשר היא פונקציית הטמפרטורה, ו־α הוא מקדם הדיפוזיה התרמי של החומר.

משוואה כללית יותר, למצב בו יש יצור (או איבוד) של חום בחומר:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \rho c_p \frac{\partial u}{\partial t} - \nabla \cdot \left( k \nabla u \right) = \dot q_v }

כאשר:

  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k}מקדם מוליכות חום של החומר
  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \rho}צפיפות החומר
  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_p}קיבול החום הסגולי
  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \dot q_v} – קצב יצור החום (באיבוד חום – שלילי)

ומקדם הדיפוזיה התרמית של החומר מוגדר במשוואה: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha = \frac{k}{c_p\rho}}

גם כאן, אם כל תכונות החומר קבועות, המשוואה הופכת לפשוטה יותר:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \rho c_p \frac{\partial u}{\partial t} - k\nabla^2 u = \dot q_v }

משוואת דיפוזיה

על אף השוני הפיזיקלי המהותי והמשמעותי ביניהן, משוואת חום ומשוואת דיפוזיה זהות מבחינה מתמטית, כאשר במשוואת הדיפוזיה, את מקומה של הטמפרטורה תופסת הצפיפות החומר, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \phi\left(\mathbf{r},t\right)} , ואת מקדם הדיפוזיה התרמית מחליף מקדם הדיפוזיה של החומר, D:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\phi(\mathbf{r},t)}{\partial t} = \nabla \cdot \big[ D(\phi,\mathbf{r}) \ \nabla\phi(\mathbf{r},t) \big] }

בדומה למשוואת החום, כאשר D קבוע, המשוואה הדיפרנציאלית נעשית לינארית:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\phi(\mathbf{r},t)}{\partial t} = D\nabla^2\phi(\mathbf{r},t) }

פתרון כללי לממד אחד

פתרון המשוואה, בממד אחד, על ידי הפרדת משתנים הוא:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ u(t,x) = X(x) T(t). \quad}


שני הצדדים של המשוואה הם משוואות התלויות במשתנים שונים, לכן הם חייבים להיות שווים לקבוע מספרי. הקבוע חייב להיות שלילי מכיוון שאחרת הטמפרטורה תגיע לאינסוף, ונסמנו λ²-. הפתרון הסופי המתקבל הוא:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T(t) = A e^{-\lambda^2 k t} \quad }

ו

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X(x) = B \sin(\lambda \, x) + C \cos(\lambda \, x).}

את הפרמטר λ נקבל מתנאי השפה של הבעיה, והמשך הפתרון על ידי טור פורייה.

דוגמה לאילוץ תנאי התחלה ושפה

ניקח מוט באורך L, המבודד כולו פרט לקצה אחד שלו, שם הוא מוחזק בטמפרטורה קבועה. התנאים שנקבל:

  • תנאי התחלה: בזמן t=0 כל המוט בטמפ' החדר: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(0,x) = T_{0} }
  • תנאי שפה א': הטמפרטורה במקום x=0 קבועה תמיד: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(t,0) = T_{max} }
  • תנאי שפה ב': כל המוט מבודד, כך שנוכל לכתוב לגבי קצה המוט: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\partial u\over \partial x}(t,L) = 0 }

מכיוון שבמשוואה הגדלים דיפרנציאליים, נוכל לבחור את נקודת האפס כרצוננו. נבחר את נקודת האפס של הטמפרטורה ב- . למרות שהטמפרטורה במוט תמיד שלילית בסקלה זו, היא הטובה ביותר להתייחס בה לבעיה. נאלץ את תנאי שפה א':

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(t,0) = A e^{-\lambda^2 k t} * C = 0 \quad }

אילו A היה שווה ל-0 היה מתקבל הפתרון הטריוויאלי אשר אין לנו עניין בו.

ומכאן:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle C = 0 \quad }

נאלץ את תנאי ב':

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\partial u\over \partial x}(t,L) = D e^{-\lambda^2 k t} \cos(\lambda \, L) = 0 }

כאשר D כולל בתוכו מספר פרמטרים שהיו קודם.

ונקבל כי λ יכול להיכתב בסדרה של ערכים אפשריים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda \,_{n} = {\pi \, \over L} (n + \frac{1}{2}) }

מכאן שגם הפרמטר החופשי A יכול להיות מספר ערכים אפשריים, נקבל:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(t,x) = \sum_{n=0}^\infty A_{n} e^{-\lambda_{n}^2 k t} \ \sin(\lambda_{n} \, x) }

כשנשאר לנו למצוא את An. נאלץ את תנאי השפה באמצעות טור פורייה, וכפל בפונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sin(\lambda_{m} \, x)} עבור מספר שלם כלשהו m. אחרי ביצוע אינטגרל על כל המוט, נקבל:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_{n} = \frac{4 \ (T_{0}-T_{max})}{\pi \, (2n + 1)} }

כך שהפתרון למקרה אחרי אילוץ כל התנאים הוא:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u(t,x) = T_{max} - \frac{4 \ (T_{max} - T_{0})}{\pi} \ \sum_{n=0}^\infty \frac{1}{2n+1} \ \sin \left( \pi \ (n+\frac{1}{2}) \ \frac{x}{L} \right) \ \exp \left( -\frac{k \ \pi^{2}}{L^{2}} \ (n+\frac{1}{2})^{2} \ t \right) }

משוואת הדיפוזיה בעיבוד תמונה

בנוסף לשימוש הקלאסי עבור זרימת חום בחומר, משוואת החום (או משוואת הדיפוזיה) משמשת בגרסתה הבסיסית או בגרסאות מוכללות בתחומים רבים. ניתן להראות כי עבור תנאי שפה מסוימים, פתרון משוואת החום הינו גרעין החלקה גאוסיאני בעל שונות הגדלה עם הזמן. דבר זה הופך את המשוואה רלוונטית לתחום של עיבוד תמונה, שכן כאשר מתייחסים לתמונה כמשטח מתאים, מקבלים כי הפעלת משוואת הדיפוזיה משמעותה החלקת התמונה במידה הולכת וגדלה עם הזמן, וכך ניתן לסנן רעש מתמונה.

בתחום זה, מגדירים גם דיפוזיה לא לינארית, בה מקדם הדיפוזיה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k(u,\vec{r})} אינו קבוע אלא תלוי בגרדיאנט התמונה. באופן זה ניתן לבצע סינון לא לינארי ובכך לסנן רעש אך לשמר את השפות בתמונה, וזוהי תוצאה רצויה שכן השפות הינן פרטים חשובים בהבנת התמונות ויש לשמרן. עם זאת, במקרים אלו אין בדרך כלל רצון למצוא פתרון סגור למשוואה אלא רק לבצע מספר מועט של צעדים בזמן.

קישורים חיצוניים