משפט ארטין-שרייר (שדות סדורים)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Crystal Clear app help index.svg
ערך ללא מקורות
בערך זה אין מקורות ביבליוגרפיים כלל, לא ברור על מה מסתמך הכתוב וייתכן שמדובר במחקר מקורי.

אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

ערך ללא מקורות
בערך זה אין מקורות ביבליוגרפיים כלל, לא ברור על מה מסתמך הכתוב וייתכן שמדובר במחקר מקורי.

אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

בתורת השדות, משפט ארטין-שרייר קובע כי שדה הוא ניתן לסידור אם ורק אם איננו סכום של ריבועים בשדה, או בשקילות שהרמה שלו היא אינסוף. המשפט נקרא על שמם של המתמטיקאים אוטו שרייר ואמיל ארטין, והוא מהווה משפט חשוב בתורת השדות הסדורים, ובעל שימושים במספר תחומים קרובים, ביניהם תבניות ריבועיות.

ניסוח

נאמר ששדהמאפיין לא 2) הוא ממשי פורמלית אם איננו סכום של מספר סופי של ריבועים בשדה, אחרת נאמר שהוא לא ממשי פורמלית. בשקילות, שדה הוא ממשי פורמלית כאשר הרמה שלו אינסופית.

משפט ארטין-שרייר קובע כי השדה הוא ממשי פורמלית אם ורק אם הוא ניתן לסידור. יותר מכך, לכל איבר בשדה שאיננו סכום ריבועים, קיים סדר בו איבר זה שלילי.

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
Logo hamichlol 3.png
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0