פונקציה כוכבית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה מרוכבת, פונקציה כוכבית (אנגלית: Starlike function) היא פונקציה אוניוולנטית (כלומר, פונקציה הולומורפית וחד-חד-ערכית) בעיגול היחידה, אשר תמונתה היא תחום כוכבי ביחס לראשית הצירים. פונקציה הולומורפית קמורה (Convex function) (להבדיל מהמינוח פונקציה קמורה), היא פונקציה כנ"ל אשר תמונתה היא תחום קמור.

לפונקציות כוכביות וקמורות תכונות מעניינות בתורת פונקציות האוניוולנטיות. משפט אלכסנדר נותן תנאי הכרחי ומספיק להיות של פונקציה כוכבית.

הגדרה

תהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f : \Omega \to \mathbb{C}} פונקציה אוניוולנטית (כלומר, פונקציה הולומורפית וחד-חד-ערכית). נאמר כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} היא

  • פונקציה כוכבית (Starlike function) אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(\Omega)} תחום כוכבי סביב ראשית הצירים.
  • פונקציה הולומורפית קמורה (Convex function) אם תחום קמור.

נתעניין בעיקר בפונקציות כנ"ל כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Omega = D = \{ z : |z| < 1 \}} עיגול היחידה.

דוגמאות

  • הפונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{z+i}{z-i}} היא העתקה קונפורמית המעבירה את עיגול היחידה לחצי המישור העליון, ולכן היא קמורה.
  • פונקציית קוב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k(z) = \frac{z}{(1-z)^2}} היא כוכבית, שכן תמונתה היא וזהו תחום כוכבי.

תכונות

ראשית, נציג תנאים מספיקים והכרחיים להיותה של פונקציה אוניוולנטית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} קמורה או כוכבית.

משפט: הפונקציה האוניוולנטית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f: \overline{D} \to f(\overline{D})} היא קמורה אם ורק אם מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \forall |z|=1: Re( 1+ \frac{z f''(z)}{f'(z)} ) \ge 0} .

משפט: אם בנוסף הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(0)=0} , אז הפונקציה היא כוכבית אם ורק אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \forall |z|=1: Re( \frac{z f'(z)}{f(z)} ) \ge 0} .

כעת, נראה את הקשר שבין פונקציה קמורה לפונקציה כוכבית:

משפט אלכסנדר (J.W Alexander, 1915): נניח כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f: D \to f(D)} אוניוולנטית. אזי היא הולומורפית קמורה אם ורק אם הפונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle zf'(z)} כוכבית.

דוגמה

נפעיל את המשפט על פונקציית קוב, שהראינו שהיא כוכבית – עבור הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle K(z)={\frac {z}{1-z}}} מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle zK'(z) = \frac{z}{(1-z)^2} = k(z)} , ולכן הפונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{z}{1-z}} קמורה, ואכן, היא מעבירה את עיגול היחידה להזזה של חצי המישור העליון: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K(D) = \{ w : Rew> -\frac{1}{2} \}} .

המחלקות ST ו-CV

את אוסף הפונקציות הכוכביות/קמורות המנורמלות על מעגל היחידה נסמן ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ST} וב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle CV} בהתאמה.

לפי משפט אלכסנדר, יש התאמה 1:1 בין שתי המחלקות:

  • לכל הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle f\in CV} מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle zf'(z) \in ST} .
  • לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F \in ST} מתקיים הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{z}{{\frac {F(w)}{w}}dw}\in CV} .

השערת המקדמים

משפט דה ברנז' טוען כי המקדמים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b_n} בפיתוח טיילור של פונקציה אוניוולנטית מקיימים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |b_n| \le n} .

כאשר עוד נחשב להשערה, שכונתה השערת המקדמים, הוא הוכח למקרים פרטיים רבים. ביניהם:

משפט (R. Nevanlinna, 1921): במחלקה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ST} מתקיימת השערת המקדמים. יותר מכך – אם מתקיים שוויון עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n_0 \ge 2} כלשהו, הפונקציה היא סיבוב של פונקציית קוב – הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle e^{i\alpha }k(e^{-i\alpha }z)} .

במחלקה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle CV} מתקיימת טענה חזקה הרבה יותר:

משפט (C. Lowner, 1921): במחלקה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle CV} מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \forall n: |b_n| \le 1} . במידה ומתקיים שוויון עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n_0 \ge 2} כלשהו, הפונקציה היא סיבוב של הפונקציה .

למעשה, שני המשפטים שקולים – אפשר בקלות להוכיח את השני בעזרת הראשון (לפי ההתאמה לעיל). כדי להוכיח את הראשון בעזרת השני, יש להשתמש בהעתקות שוורץ-קריסטופל.

ראו גם

לקריאה נוספת