תורת ההומולוגיה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Gnome-colors-edit-find-replace.svg יש לשכתב ערך זה. ייתכן שהערך מכיל טעויות, או שהניסוח וצורת הכתיבה שלו אינם מתאימים.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. אם אתם סבורים כי אין בדף בעיה, ניתן לציין זאת בדף השיחה.

הומולוגיה של מרחב טופולוגי היא טכניקה ללמידת אוסף תכונות ומאפיינים שונים של מרחבים טופולוגיים. בדומה להומוטופיה, הומולוגיה מודדת שינויים רציפים על פני מרחבים טופולוגיים תחת מעברים שונים. לכל מרחב טופולוגי מתאימה סדרה של חבורות אבליות, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ H_0(X), H_1(X), H_2(X),\dots } , שכל אחת מהן נושאת מידע מסוים על המרחב X.

ההומולוגיה של מרחב טופולוגי גם מאפשרת להבדיל בין מרחבים שונים: למרחבים הומיאומואפיים ואף שקולים הומוטופית אותה ההומולוגיה. במילים אחרות, חבורות ההומולוגיה הן "אינווריאנטים טופולוגיים והומוטופיים". למרות המידע הרב שמספקות חבורות ההומולוגיה, הן אינן מזהות באופן מלא את המרחב - ובאופן כללי ייתכנו מרחבים טופולוגיים לא שקולים בעלי אותן חבורות הומולוגיה; בכל זאת, למשפט וייטהד יש מקבילה הומולוגית, בעזרת משפט הורוויץ.

האינווריאנט ההומולוגי הראשון והפשוט ביותר, החבורה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ H_0(X)} , סופרת את מספר מרכיבי הקשירות המסילתית של המרחב. החבורה הבאה, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ H_1(X)} , איזומורפית באופן טבעי אל האבליניזציה של החבורה היסודית של המרחב.

לחישוב ההומולוגיה של מרחב טופולוגי מספר שיטות. הנפוצה והבסיסית ביניהן היא סדרת מאייר-ויאטוריס, המקשרת את ההומולוגיה של מרחב טופולוגי להומולוגיה של כיסוי טוב שלו, ומקבילה במובן מסוים למשפט ואן קמפן בחישוב החבורה היסודית. בעזרתה גם ניתן לפתח שיטה אלגוריתמית לחישוב מחלקה גדולה של מרחבי CW סוף-ממדיים.

תורת הומולוגיה

הגדרה אלגברית

תורת הומולוגיה היא אוסף של פנקטורים . דהיינו, פנקטורים שמתאימים לכל זוג מרחבים טופולוגי המקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A\subseteq X} חבורה אבלית ומקיימים את התנאים הבאים:

  1. הומוטופיה: לכל שתי פונקציות הומוטופיות ולכל n הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_n(f)=H_n(g)\;\Leftarrow \;f\simeq g}
  2. סדרה מדויקת: לכל n קיימת פונקציה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_n:H_n(X,A)\rightarrow H_{n-1}(A,\emptyset)} כך שהסדרה הבאה מדויקת:הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cdots\rightarrow H_n(A,\emptyset)\stackrel{H_n(i)}{\longrightarrow} H_n(X,\emptyset) \stackrel{H_n(j)}{\longrightarrow} H_n(X,A) \stackrel{\partial_n}{\longrightarrow}H_{n-1}(A,\emptyset)\stackrel{H_{n-1}(i)}{\longrightarrow} H_{n-1}(X,\emptyset)\rightarrow\cdots} כשהפונקציות: i היא ההכלה מ-A ל-X ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle j:(X,\emptyset)\rightarrow (X,A)} מעבירה כל איבר לעצמו.
  3. קיצוץ (Excision): אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Z\subseteq A\subseteq X} כך ש- אז ההכלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (X-Z,A-Z)\hookrightarrow(X,A)} משרה איזומורפיזם: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_n(X-Z,A-Z)\cong H_n(X,A)}
  4. במרחב נקודתי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_n(\{p\},\emptyset)=\left\{\begin{array}{lr} 0 & n\neq 0 \\ \mathbb{Z} & n=0 \end{array}\right.}
  5. טבעיות: לכל n ופונקציה של זוגותהפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ f:(X,A)\rightarrow(Y,B)} מתקייםהפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ H_{n-1}(f\mid_A)\partial_n=\partial_nH_n(f)} . גרפית, הדיאגרמה הבאה צריכה להתחלף:
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{array}{ccc} H_n(X,A) & \stackrel{H_n(f)}{\longrightarrow} & H_n(Y,B) \\ ^{\partial_n} \downarrow & & \downarrow ^{\partial_n} \\ H_{n-1}(A) & \stackrel{H_{n-1}(f\mid_A)}{\longrightarrow} & H_{n-1}(B) \end{array}}

מעתה נגדיר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ H_n(X)=H_n(X,\emptyset)} , לשם פשטות הסימון.

משפטים בסיסיים

המשפטים הבאים יהיו נכונים בכל תורת הומולוגיה המקיימת את האקסיומות של הסעיף הקודם:

  1. לכל מרחב טופולוגי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} מתקיים
  2. לכל זוג מרחבים טופולוגיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X,Y} ההכלות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (X,\emptyset)\stackrel{i_X}{\longrightarrow}(X\coprod Y,\emptyset)\stackrel{i_Y}{\longleftarrow} (Y,\emptyset)} משרות איזומורפיזם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_n(X)\oplus H_n(Y)\cong H_n(X\coprod Y)}
  3. לכל n הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_n(S^n)=\mathbb{Z}}