קואורדינטות איזותרמיות

מתוך המכלול, האנציקלופדיה היהודית
גרסה מ־03:32, 25 במרץ 2020 מאת דויד (שיחה | תרומות) (החלפת טקסט – "{{מחפש מקורות}}" ב־"{{מקורות|רמה=מחפש}}")
קפיצה לניווט קפיצה לחיפוש
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.

אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.

אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

במתמטיקה, ובאופן ספציפי יותר בגאומטריה דיפרנציאלית, קואורדינטות איזותרמיותאנגלית: Isothermal coordinates) על יריעה רימנית הינן מערכת קואורדינטות מקומית שבה המטריקה של היריעה היא קונפורמית למטריקה האוקלידית. זה אומר שבקואורדינטות איזותרמיות, המטריקה הרימנית המקומית מקבלת את הצורה:

g=φ(x1,...,xn)(dx12++dxn2),

כאשר φ היא פונקציה חלקה.

קואורדינטות איזותרמיות על משטחים (שהינם יריעות מממד 2) הוצגו לראשונה על ידי גאוס[1][2] כשפתר את הבעיה של המיפוי הקונפורמי הכללי של משטח נתון על גבי משטח אחר.

ראו גם

הערות שוליים

  1. Gauss: On Conformal Representation
  2. Allgemeine Auflösung der Aufgabe die Theile einer gegebenen Fläche auf einer andern gegebnen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinstenTheiIen ähnlich wird. 1822 [1]
ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.