הצפנה הסתברותית
הצפנה הסתברותית (באנגלית: Probabilistic encryption) היא סכימת הצפנה סימטרית או אסימטרית שבה נוסף לתהליך ההצפנה אלמנט אקראי כך שהטקסט המוצפן המתקבל מאותו מסר יכול להיות שונה בכל הצפנה אפילו אם המפתח איתו הוצפן זהה, ואילו הפענוח תמיד דטרמיניסטי. באופן תאורטי, זוהי מכונת טיורינג הסתברותית שמצפינה את המסר הגלוי בהטלת מטבע, בניגוד לסכימות הצפנה דטרמיניסטיות כמו RSA או רבין שבהן הטקסט המוצפן נותר ללא שינוי אם המסר הגלוי והמפתח קבועים. המושג הוטבע לראשונה על ידי שפי גולדווסר וסילביו מיקאלי ב-1983 והדוגמאות המעשיות הראשונות הן הצפנת בלום גולדווסר וצופן אל-גמאל. מאז הפך המושג לאחד מיסודות ההצפנה המודרנית וסכימות רבות הומצאו בהשראתו. ידוע שכדי שסכימת הצפנה תחשב מוכחת כבטוחה סמנטית תחת מודל סיבוכיות סטנדרטי היא חייבת להיות הסתברותית, כיוון שבהצפנה דטרמיניסטית העובדה ששני טקסטים מוצפנים זהים משליכה בהכרח שטקסט המקור שלהם זהה, מכאן שמעט מידע מועבר ליריב ולכן אינה יכולה להיות בטוחה סמנטית. הוספת הסתברותיות (פסאודו-אקראיות) פותרת בעיה זו, כיוון שבסבירות מאוד גבוהה הצפנה חוזרת של בלוק טקסט מקורי תניב תוצאות שונות לחלוטין. אפשר להוסיף הסתברותיות גם לסכימות הצפנה דטרמיניסטיות כמו RSA על ידי ריפוד עם ביטחון תחת מודל אורקל אקראי (דוגמת OAEP).
מידע חלקי
הצורך בהצפנה הסתברותית נובע מבעיה מהותית שקיימת בכל סכימת הצפנה דטרמיניסטית המבוססת על פונקציה חד כיוונית עם דלת מלכודת. למשל אם נתונה פונקציה חד-כיוונית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} כך שקל לחשב את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x) } אך קשה לחשב את הפונקציה ההופכית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=f^{-1}(y)} ללא דלת המלכודת:
- אין הוכחה בהכרח שאם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} חד-כיוונית יהיה תמיד קשה להפוך אותה גם כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} הוא בעל מבנה מיוחד. הדוגמה הכי פשוטה היא בהינתן פונקציית RSA ידוע שקל לחשב ערכים קטנים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} אם המעריך (מפתח ההצפנה) קטן, כך שהתוצאה אינה גדולה מהמודולוס.
- העובדה ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} חד-כיוונית אינה מעידה בהכרח שלא ניתן לחלץ מידע חלקי לגבי . לדוגמה אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\equiv g^x\text{ mod }p} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} ראשוני ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} הוא יוצר של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p^*} אזי אף על פי שזו פונקציה חד כיוונית שקשה להפוך אם ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p-1} יש גורם ראשוני גדול, העובדה היא ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} אינו מספר זוגי אם ורק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} הוא שארית ריבועית מודולו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} וקיים אלגוריתם הסתברותי יעיל להכריע אם מספר הוא שארית ריבועית מודולו מספר ראשוני כלשהו. לכן תמיד אפשר לדעת מהי הסיבית הפחות משמעותית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} .
לסכימת הצפנה הסתברותית קשר למושג שנקרא סיבית קשה, הבעיה שהועלתה על ידי גילס ברסרד היא כיצד להצפין סיבית בודדת באמצעות סכימת הצפנה אסימטרית, אפשר לראות שסכימה דטרמיניסטית כמו RSA אינה מתאימה למטרה זו כיוון שאף על פי שהיא בטוחה, אפשר לחשב את הסיבית הפחות משמעותית. אפשר לנסות לפתור את הבעיה על ידי הטמעה של הסיבית הסודית בתוך מספר אקראי כלשהו במיקום מוסכם או באמצעות חישוב כלשהו כמו XOR, אך העובדה שבאופן עקרוני בכל סכימה דטרמיניסטית גם אם היא בטוחה אין זה סותר את העובדה שקל לחשב מידע חלקי כמו הסיבית הראשונה גורמת לכך שסכימה כזו לא מתאימה להצפנת סיבית אחת. ההצעה של גולדווסר ומיקלי פותרת בעיה זו.
סכימה קונקרטית
הסכימה ההסתברותית הקונקרטית הראשונה, שהוצעה על ידי גולדווסר ומיקלי[1] מסתמכת על בעיית השארית הריבועית מודולו מספר פריק שנחשבת לפונקציה חד-כיוונית קשה והיא למעשה הסכימה הראשונה שהוכחה כבעלת ביטחון סמנטי. שיטה זו אינה יעילה ולכן אינה בשימוש מעשי, חשיבותה תאורטית בלבד.
הבעיה מוגדרת כדלהלן: נתון מודולוס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} שהוא כפולה של שני ראשוניים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p,q} אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} זר ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} הוא שארית ריבועית (quadratic residue) ביחס למודולוס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} אם למשוואה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\equiv y^2\text{(mod }n)}
יש פתרון שלם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} , אחרת אמרים ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} אינו שארית ריבועית (quadratic non-residue). ללא ידיעת הגורמים הראשוניים קשה להכריע בשאלה.
הסכימה הבאה מנצלת עובדה זו למערכת הצפנה. החיסרון שלה הוא שהטקסט המוצפן עבור כל סיבית מידע גדול (לפחות 1,024 סיביות). היא פועלת כדלהלן:
בהינתן פרמטר ביטחון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} המשתמש A מכין את הפרמטרים הבאים:
- בוחר באופן אקראי שני מספרים ראשוניים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_1} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_2} באורך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} סיביות
- מחשב את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=p_1p_2}
- בוחר שלם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} אינו שארית ריבועית מודולו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} ולו סימן יעקובי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle +1} .
- המפתח הפרטי הוא המספרים הראשוניים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_1} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_2}
- המפתח הפומבי הוא הערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} .
אם B רוצה להצפין עבור A מחרוזת סיביות של טקסט גלוי כלשהו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b={b_1,...,b_l}} באורך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l} סיביות הוא מבצע:
- עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1}
עד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l}
:
- בוחר שלם אקראי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_i\in Z_n^*}
- אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i=1} מציב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i=yr_i^2\text{ mod }n}
- אחרת אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i=0} מציב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i=r_i^2\text{ mod }n}
- הטקסט המוצפן הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=c_1,...,c_l}
לפענוח הטקסט המוצפן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} המשתמש A מחשב כדלהלן:
- עבור כל סיבית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i} מציב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i=Q_n(c_i)} . כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_n} הוא אלגוריתם פולינומי שמכריע בשאלה האם שלם כלשהו הוא שארית ריבועית מודולו מספר פריק שהגורמים הראשוניים שלו ידועים, (ראו סימן לז'נדר או מבחן אוילר). אם האלגוריתם מחזיר אמת הסיבית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i} היא '1' אחרת '0'.
- הטקסט המקורי הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} .
סיבוכיות ההצפנה היא בסדר גודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(lk^2)} וסיבוכיות הפענוח היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(lk^3)} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} הוא פרמטר הביטחון (אורך כל אחד מהמספרים הראשוניים בסיביות) ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l} אורך המסר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} בסיביות.
אפשר לראות ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i} הוא שארית ריבועית מודולו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} רק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i=0} . כיוון שקל לדעת אם מספר הוא שארית ריבועית מודולו מספר ראשוני אך קשה לעשות זאת מודולו מספר פריק, המשתמש הלגיטימי שהגורמים הראשוניים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} ידועים לו יכול בקלות לחשב את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_n(c_i)} ולגלות האם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i=0} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_i=1} . בגלל אקראיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} בכל פעם שתתבצע הצפנה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} יתקבל ערך אחר כך שהתוקף אינו יכול ללמוד מאומה מהתבוננות בטקסט המוצפן.
הערות שוליים
- ↑ Goldwasser, S. and S. Micali (1984). “Probabilistic encryption.” Journal of Computer and System Sciences, 28, 270–299
הצפנה הסתברותית41372182Q7246854