מטריצת אפסים

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Merge-arrows-3.svg מתקיים דיון בו מוצע לאחד את הערך בעיית מטריצת האפסים עם ערך זה.
אם אין התנגדויות, ניתן לאחד את הערכים שבוע לאחר הצבת התבנית.

במתמטיקה ובפרט באלגברה ליניארית, מטריצת אפסים היא מטריצה שכל איבריה הם 0, כלומר אפסים. לדוגמה:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0_{1,1} = \begin{bmatrix} 0 \end{bmatrix} ,\ 0_{2,2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ,\ 0_{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} ,\ }

קבוצת המטריצות מסדר m×n בחוג K יוצרת את החוג הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K_{m,n} \,} . מטריצת האפסים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0_{K_{m,n}} \, } ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K_{m,n} \, } היא המטריצה שכל איבריה שווים ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0_K \, } , כאשר הוא איבר האפס ב-K. דהיינו:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0_{K_{m,n}} = \begin{bmatrix} 0_K & 0_K & \cdots & 0_K \\ 0_K & 0_K & \cdots & 0_K \\ \vdots & \vdots & & \vdots \\ 0_K & 0_K & \cdots & 0_K \end{bmatrix}_{m \times n} }

מטריצת האפסים היא איבר האפס ב-הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle K_{m,n}\,} , כלומר לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A \in K_{m,n} \, } מתקיים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0_{K_{m,n}}+A = A + 0_{K_{m,n}} = A}

עבור החוג K קיימת בדיוק מטריצת אפסים אחת מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m\times n} , כך שבהקשר ברור ניתן להתייחס אליה כאל מטריצת האפסים. גם איבר האפס מיוצג בדרך כלל באמצעות 0 כך שניתן להגדירה באופן גנרי עבור כל חוג.

מטריצת אפסים מייצגת טרנספורמציה ליניארית המעבירה כל וקטור לווקטור האפס.

ראו גם

קישורים חיצוניים

  • מטריצת אפסים, באתר MathWorld (באנגלית)   המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0