מטריצה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.


במתמטיקה, מַטְרִיצָה היא מערך דו-ממדי, שרכיביו הם סקלרים, לרוב מספרים, או איברים בחוג כללי יותר.

האפשרות לרכז במטריצה מידע רב ולהפעיל עליה שיטות וכלים סטנדרטיים, מוצאת למטריצות שימושים רבים. השימוש השכיח ביותר במטריצות הוא לפתרון של מערכת משוואות לינאריות באמצעות דירוג מטריצות. מלבד זה חשיבותן העיקרית של המטריצות במתמטיקה, ובעיקר של מטריצות ריבועיות, נובעת מכך שניתן לייצג בעזרתן טרנספורמציות לינאריות, באופן כזה שפעולת הכפל מתאימה לפעולת ההרכבה של הטרנספורמציות. מסיבות דומות יש לאלגברות של מטריצות תפקיד מרכזי בתורת החוגים.

הגדרה

כאשר n ו-m הם מספרים טבעיים, מטריצה מסדר m על n (או: מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ m \times n} ) היא מערך שבו m שורות ו- n עמודות. הרכיבים הם בדרך כלל מספרים - כך למשל "מטריצה ממשית" היא מטריצה שרכיביה מספרים ממשיים, ו"מטריצה מרוכבת" היא מטריצה שרכיביה מספרים מרוכבים. אם R הוא מבנה אלגברי, "מטריצה מעל (מבנה אלגברי) R" היא מטריצה שרכיביה שייכים ל- R.

את רכיבי המטריצה מסמנים בזוג אינדקסים: הרכיב במקום שבו נפגשות השורה ה-i והעמודה ה-j במטריצה A נקרא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_{ij}} , או לפעמים .

לדוגמה, המטריצה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 7 \\ 4&9&2 \\ 6&1&5\end{bmatrix}} היא מסדר 4 על 3; הרכיבים הם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_{3,2}=9,A_{4,3}=5} , וכן הלאה.

פעולות על מטריצות

אוסף המטריצות מסדר m על n מעל שדה נתון F מהווה מרחב וקטורי מעל אותו שדה, כאשר פעולת הכפל בסקלר ופעולת החיבור מוגדרות באופן טבעי, על כל רכיב בנפרד. מקובל לסמן מרחב זה בסימון . את הכפל של מטריצות אין מגדירים באותה דרך, רכיב ברכיב, אלא באופן מסובך מעט יותר. המכפלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ AB} מוגדרת רק בתנאי שמספר השורות של B שווה למספר העמודות של A.

אם עבור מטריצה מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ m=n} , כלומר מספר העמודות במטריצה שווה למספר השורות בה, המטריצה נקראת מטריצה ריבועית. במטריצה ריבועית A, האלכסון שרכיביו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A_{11},\dots,A_{nn}} נקרא האלכסון הראשי.

מטריצה כייצוג של העתקה לינארית

אחד השימושים העיקריים למטריצות הוא ייצוג של העתקות לינאריות בין מרחבים מממד סופי: אם קובעים בסיסים סדורים לשני מרחבים V ו-W, ניתן להתאים לכל העתקה לינארית מ-V ל-W מטריצה יחידה, וכל מטריצה מייצגת טרנספורמציה לינארית יחידה. התאמה חשובה זו היא איזומורפיזם בין מרחב ההעתקות הלינאריות למרחב המטריצות מהגודל המתאים.

כדי לתאר העתקה לינארית באופן מלא, מספיק לדעת לאן היא מעבירה וקטורי בסיס של התחום. בעזרת מידע זה ותכונת הלינאריות של ההעתקה, ניתן לדעת לאן עובר כל וקטור, כפי שנדגים מיד.

נניח כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} היא העתקה לינארית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T : V \rightarrow W } , ונניח גם שנתונים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ B= \{v_1,...,v_n\}} בסיס ל , ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ C= \{w_1,...,w_m\}} בסיס ל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ W} (ברור כי ממדי המרחבים הם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,n} ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,m} בהתאמה).

עתה, נניח כי אנו יודעים איך פועלת ההעתקה על וקטורי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v_i } . משמע, אנו יודעים לייצג כל וקטור על פי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ C} . נכתוב זאת במפורש:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv_1 =a_{1,1} w_1 + a_{2,1} w_2 +...+a_{m,1}w_m }

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv_2 =a_{1,2} w_1 + a_{2,2} w_2 +...+a_{m,2}w_m }

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv_3 =a_{1,3} w_1 + a_{2,3} w_2 +...+a_{m,3}w_m }

וכך הלאה עד

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv_n =a_{1,n} w_1 + a_{2,n} w_2 +...+a_{m,n}w_m }

בעזרת מידע זה בלבד, נוכל לדעת עבור כל את הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv} על ידי שימוש בלינאריות. ניקח וקטור כלשהו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v \in V } , שייצוגו לפי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ B } הוא

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v = c_1 v_1 + c_2 v_2+ ... + c_n v_n } , נשתמש בלינאריות כדי לקבל

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv = T(\sum_{i=1}^n c_i v_i) = \sum_{i=1}^n c_i T(v_i) }

אך כפי שאמרנו, אנו יודעים בדיוק למה שווה כל , ולכן נציב ונקבל

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv = \sum_{i=1}^n c_i ( a_{1,i} w_1 + a_{2,i} w_2 +...+a_{m,i}w_m ) = \sum_{i=1}^n c_i ( \sum_{j=1}^m a_{j,i} w_j)} .

נקבץ את המקדמים של כל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ w_j} , ונקבל

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv = (\sum_{i=1}^n c_i a_{1,i})w_1 + (\sum_{i=1}^n c_i a_{2,i})w_2 +...+ (\sum_{i=1}^n c_i a_{m,i})w_m }

בכתיבה פשוטה יותר, וקטור הקואורדינטות של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv } לפי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ C} הוא

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [Tv]_C = (\sum_{i=1}^n c_i a_{1,i}, \sum_{i=1}^n c_i a_{2,i}, ..., \sum_{i=1}^n c_i a_{m,i})}

הסימון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [Tv]_C } משמעו וקטור הקואורדינטות של הווקטור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Tv} לפי הבסיס .

כך אנו יודעים כיצד פועלת ההעתקה על וקטור כלשהו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} . נשים לב כי לאחר שבחרנו בסיסים, מספיק לדעת את המקדמים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ a_{i,j} } כדי להגדיר את ההעתקה ואין צורך ברצף המשוואות המסורבל המופיע למעלה, בתנאי שמסכימים מראש על הסדר. המוסכמה המקובלת היא כי המטריצה המייצגת את ההעתקה לפי הבסיסים הנתונים היא

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [T]^B_C = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & ... & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & ... & a_{3,n} \\ : & : & : &\ddots & : \\ a_{m,1} & a_{m,2} & a_{m,3} & ... & a_{m,n} \\ \end{bmatrix}}

  • הסימון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [T]^B_C} משמעו: המטריצה המייצגת את ההעתקה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T : V \rightarrow W } לפי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,B} בתחום והבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,C} בטווח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,W} .
  • המקדמים במטריצה הם בדיוק המקדמים המופיעים ברצף המשוואות מתחילת הפסקה, בשינוי סדר קל. העמודה ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,i} במטריצה מורכבת מהמקדמים מהשורה ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,i} ברצף המשוואות. משמע, העמודה ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,i} היא ייצוגו של וקטור הבסיס ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,i} של התחום, לפי הבסיס של הטווח.
  • במפורש: האיבר ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ a_{i,j}} במטריצה הוא המקדם ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,i} בווקטור הקואורדינטות של התמונה של הווקטור ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,j} בבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,B} , בייצוג על פי הבסיס . מטריצה מסדר מייצגת העתקה ממרחב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,n} -ממדי למרחב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,m} -ממדי.

מציאת התמונה של וקטור כלשהו, הופכת עתה לפעולה פשוטה של כפל מטריצות. אם ניקח וקטור כלשהו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v \in V} , שייצוגו על פי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,B} הוא

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v = c_1 v_1 + c_2 v_2+ ... + c_n v_n } ,

על מנת למצוא את תמונתו נצטרך פשוט לבצע את כפל המטריצות

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle [T(v)]_C = [T]^B_C \cdot [v]_B = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & ... & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & ... & a_{3,n} \\ : & : & :& \ddots & : \\ a_{m,1} & a_{m,2} & a_{m,3} & ... & a_{m,n} \\ \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ : \\ c_n \\ \end{bmatrix} }

הסימון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [v]_B } משמעו וקטור הקואורדינטות של הווקטור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v} לפי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ B} .

ההתאמה בין ההעתקות למטריצות

האיזומורפיזם בין העתקות למטריצות המייצגות אותן הוא שימושי מאוד:

  • נניח כי הן העתקות לינאריות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T,S : V \rightarrow W } , וכן נתונים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ B } בסיס ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V} , ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ C} בסיס ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ W} , אזי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [T+S]^B_C = [T]^B_C + [S]^B_C } , במילים - המטריצה המייצגת את סכום ההעתקות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,S} היא המטריצה המתקבלת מסכימת המטריצות המייצגות את הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,S} .
  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [cT]^B_C=c[T]^B_C } , ובמילים - המטריצה המייצגת את כפל ההעתקה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} בסקלר היא המטריצה המתקבלת מכפל המטריצה המייצגת את הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} באותו סקלר.
  • נניח כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T,S} הן העתקות לינאריות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ S : V \rightarrow W } , הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T : W \rightarrow U } , וכן נתונים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ B } בסיס ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V} , הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ C} בסיס ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ W} , ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ D} בסיס ל-, אזי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [T \circ S]^B_D = [T]^C_D \cdot [S]^B_C } , כאשר ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [T \circ S]^B_D} הכוונה היא להרכבת ההעתקות, וב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ [T]^C_D \cdot [S]^B_C} הכוונה היא לכפל מטריצות. במילים - המטריצה המייצגת את הרכבת ההעתקות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,S} היא המטריצה המתקבלת מכפל המטריצות המתאימות ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,T} ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,S} . למעשה, זו הסיבה שכפל מטריצות, שאינו נעשה בדרך אינטואיטיבית, הוגדר כך. מכאן מובן גם מדוע כפל מטריצות מוגדר רק אם מספר השורות של המטריצה הימנית שווה למספר העמודות של המטריצה השמאלית.
  • למטריצה יש אותם ערכים עצמיים, פולינום אופייני, פולינום מינימלי ודרגה כמו להעתקה שהיא מייצגת.

נוכח התאמה מרשימה זו, שגיאה נפוצה היא לזהות מטריצה עם העתקה לינארית. כזכור, לכל מטריצה מתאימה העתקה לינארית יחידה, רק לאחר שנבחר בסיס בתחום ובטווח. לפני הגדרת בסיסים אלה כל מטריצה (שאינה סקלרית) יכולה לייצג אינסוף העתקות לינאריות, ולהפך. כמו כן, יש לשים לב כי המוסכמה היא ייצוג של טרנספורמציות הפועלות על וקטורים כמטריצות הפועלות על וקטורי עמודה בכפל מימין, אך באותה מידה ניתן היה להגדיר את ההפך - כפל משמאל. אז מטריצה מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ m \times n} הייתה מייצגת טרנספורמציה ממרחב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,m} ממדי למרחב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,n} ממדי והווקטורים היו וקטורי שורה.

מרחבי שורות, עמודות ופתרונות

Postscript-viewer-shaded.png ערך מורחב – משפט רושה-קפלי

מרחב השורות של מטריצה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A} בגודל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ m\times n} הוא המרחב הנפרש על ידי וקטורי שורותיה (הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ m} וקטורים ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ F^n} ), ומרחב העמודות של מטריצה הוא המרחב הנפרש על ידי עמודותיה ( וקטורים ב- הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ F^m} ).

דרגת שורות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A} היא הממד של מרחב שורותיה, ודרגת עמודות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A} היא ממד מרחב העמודות שלה בהתאם. ניתן להוכיח כי עבור כל מטריצה דרגת השורות שווה לדרגת העמודות. על כן, אומרים לרוב בפשטות דרגת המטריצה.

מרחב הפתרונות של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} הוא מרחב כל הווקטורים שפותרים את המשוואה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Ax=0} . משפט בסיסי קובע שסכום ממד מרחב הפתרונות של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} עם הדרגה של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} הוא מספר העמודות שלה, n.

מבנה אלגברי

אוסף כל המטריצות מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ m \times n} מעל שדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}} המסומן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \operatorname{ Hom }(\mathbb{F}^n,\mathbb{F}^m)} מהווה מרחב וקטורי מממד הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n\cdot m} . מקרה חשוב במיוחד הוא אוסף כל המטריצות הריבועיות מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n \times n} מעל שדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}} . קבוצה זו מסומנת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \operatorname {M_n} (\mathbb{F})} ומהווה חוג לא קומוטטיבי עם יחידה, שלו מספר תת-חוגים מעניינים. אוסף כל המטריצות ההפיכות מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n \times n} מעל שדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}} המסומן (General linear group) מהווה חבורה ביחס לכפל מטריצות. אוסף כל המטריצות ההפיכות מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n \times n} מעל שדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}} , שהדטרמיננטה שלהן היא אחד, המסומן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \operatorname {SL_n} (\mathbb{F})} (Special linear group) הוא תת-חבורה חשובה שלו.

מטריצה משוחלפת

Postscript-viewer-shaded.png ערך מורחב – מטריצה משוחלפת

מטריצה משוחלפת (Transposed Matrix) היא מטריצה שהתקבלה ממטריצה אחרת על ידי הפיכת כל שורה לעמודה (שחלוף).

הגדרה

תהא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, A} מטריצה מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, n\times m} . המטריצה המשוחלפת שלה, שתסומן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, A^t} (מקובלים גם הסימונים Atr , tA , AT או ′A) ,

היא מטריצה מסדר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, m\times n} שמוגדרת כך: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, (A^t)_{ij}=(A)_{ji}} , עבור כל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, 1\le i\le m, 1\le j\le n} .

דוגמאות

מטריצה ריבועית

Postscript-viewer-shaded.png ערך מורחב – מטריצה ריבועית

מטריצה ריבועית היא מטריצה שמספר העמודות שלה שווה למספר השורות. בניגוד לסתם מטריצות, המייצגות העתקות לינאריות ממרחב אחד למרחב אחר, מטריצות ריבועיות יכולות לייצג העתקות ממרחב אל עצמו, ולכן האוסף הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ M_n(F)} של מטריצות ריבועיות מסדר n על n מעל שדה F, סגור לכפל, ומהווה אלגברה, הקרויה אלגברת המטריצות.

הדיון במטריצות ריבועיות עשיר במיוחד, וכולל התייחסות לסוגים מיוחדים אחדים של מטריצות ריבועיות, ובהן מטריצת היחידה, מטריצה הפיכה, מטריצה סינגולרית, מטריצה משוחלפת, מטריצה סימטרית, מטריצה אנטי-סימטרית, מטריצה הרמיטית, מטריצה יוניטרית, מטריצה נילפוטנטית ומטריצה סטוכסטית, וכמו כן למטריצה ריבועית מוגדרת הדטרמיננטה שלה, שהיא כלי חשוב במספר תחומים.

שפות תכנות

בשפות תכנות מיוצגת מטריצה באמצעות מערך דו-ממדי. חבילות תוכנה לתכנות מדעי כוללות גם פונקציות לפעולות על מטריצות, כגון שחלוף וכפל.

ראו גם

קישורים חיצוניים



Logo hamichlol.png
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0