משפט דה מואבר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

משפט דה-מואבר, הקרוי על שמו של אברהם דה-מואבר (Abraham de Moivre), קובע שלכל מספר ממשי ולכל מספר שלם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} מתקיים

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^n=\Big[\cos(x)+i\sin(x)\Big]^n=\cos(nx)+i\sin(nx)}

כאשר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Re}(z)=\cos(x)} הרכיב הממשי במספר מרוכב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} , הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Im}(z)=i\sin(x)} הרכיב המדומה במספר זה.

כלומר, חשיבות משפט דה-מואבר היא בכך שהוא מקשר בין מספרים מרוכבים וטריגונומטריה; ובאופן מעשי מאפשר להשתמש בקשר זה כדי להעלות מספרים מרוכבים בחזקה (או למצוא שורש שלהם, באופן דומה).

את נוסחת דה-מואבר אפשר להוכיח באינדוקציה מן הזהות

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Big[\cos(x)+i\sin(x)\Big]\Big[\cos(y)+i\sin(y)\Big]=\cos(x+y)+i\sin(x+y)}

השקולה לזהויות הטריגונומטריות

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align}\cos(x)\cos(y)-\sin(x)\sin(y)&=\cos(x+y)\\\cos(x)\sin(y)+\sin(x)\cos(y)&=\sin(x+y)\end{align}}

לנוסחה יש שני שימושים עיקריים: הוצאת שורש ממספר מרוכב, והצגת גדלים טריגונומטריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(nx),\sin(nx)} כפולינומים ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(x),\sin(x)} בהתאמה.

כך למשל, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(5x) = 16\cos(x)^5-20\cos(x)^3+5\cos(x)} – ראו פולינומי צ'בישב.

אברהם דה-מואבר היה חבר קרוב של אייזק ניוטון. בשנת 1698 כתב שנוסחה זו הייתה ידועה לניוטון עוד ב-1676. ניתן להגיע לנוסחה זאת בקלות מנוסחת אוילר (שהתגלתה מאוחר יותר). זאת משום שלפי נוסחת אוילר, משפט דה-מואבר היא פשוט השוויון הטריוויאלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{xi})^n=e^{(nx)i}} .

הוצאת שורש מרוכב

ניתן להשתמש בנוסחת דה-מואבר כדי לחשב את השורשים מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} של מספר מרוכב כלשהו.

אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} מספר מרוכב אשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Im}(z)\ne0} , אזי ניתן לייצג אותו באופן יחיד בצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=r\Big[\cos(x)+i\sin(x)\Big]} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r>0\ ,\ x\in(0,2\pi)} .

המספר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega=R\Big[\cos(y)+i\sin(y)\Big]\ ,\ R>0} הוא שורש מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega^n=z} , כלומר, לפי נוסחת דה-מואבר,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^n\Big[\cos(ny)+i\sin(ny)\Big]=r\Big[\cos(x)+i\sin(x)\Big]}

זה קורה בדיוק כאשר:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^n=r\ ,\ \cos(ny)+i\sin(ny)=\cos(x)+i\sin(x)}

כיוון שלכל מספר חיובי קיים שורש חיובי יחיד מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} והפונקציות הטריגונומטריות מחזוריות, עם מחזור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi}  :

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega=\sqrt[n]z=\sqrt[n]{r\Big[\cos(x)+i\sin(x)\Big]}=\sqrt[n]r\left[\cos\left(\frac{x+2\pi k}{n}\right)+i\sin\left(\frac{x+2\pi k}{n}\right)\right]}

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=0,1,\ldots,n-1} , ואלו בדיוק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} השורשים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} .

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

משפט_דה_מואבר18131104Q190556