סדרת פל

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

סדרת פל וסדרת פל-לוקאס הן סדרות של מספרים טבעיים, שהן מקרים פרטיים של סדרת לוקאס. מספר טבעי המשתייך לסדרת פל נקרא מספר פל.

מספרי פל מוכרים כבר מן העת העתיקה, והם משמשים בעיקר לחישוב קירובים לשורש הריבועי של 2. סדרת פל, יחד עם משוואת פל, יוחסו בטעות על ידי לאונרד אוילר לג'ון פל.

הגדרת הסדרה

סדרת פל מוגדרת על-פי הנוסחה הרקורסיבית

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P_n=\begin{cases}0&:n=0\\1&:n=1\\2P_{n-1}+P_{n-2}&:n\ge2\end{cases}}

כך מתקבלים המספרים 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ...

תכונות

  • היחס בין שני איברי פל עוקבים שואף ליחס הכסף הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\sqrt2} .
באיבר התשיעי הקירוב הוא
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{985}{408}=2.4142\approx1+\sqrt2}
  • האבר ה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2n+1} שווה לסכום ריבועי האברים ה- וה-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n+1} .
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P_{2n+1}=P_{n+1}^2+P_{n}^2}
  • תכונה מעניינת של מספרי פל היא שהביטוי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2P_n^2+(-1)^n} הוא מספר ריבועי, כך שהם פותרים את ערכי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y} של משוואת פל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x^2-2y^2=\pm1} .
עבור אברי סדרת פל הפותרים את הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y} , ועבור האיברים המקבילים להם ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x} , היחס שואף ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2} .
הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle 1,{\frac {3}{2}},{\frac {7}{5}},{\frac {17}{12}},{\frac {41}{29}},{\frac {99}{70}},\ldots }
ראוי לציין כי ערכי ה- המתקבלים שווים לסכום של אבר פל המקביל להם ולאבר פל שלפניו
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x}{y}=\frac{P_{n-1}+P_n}{P_n}}
והם מקיימים את אותם תנאים של אברי הסדרה, קרי, היחס ביניהם הוא יחס הכסף, וכל אבר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x} שווה לפעמיים קודמו ועוד האבר הקודם לקודמו. החל מהאבר ה־4 או ה־5 המנה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \tfrac{x}{y}} שווה בקירוב טוב ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2} .
  • ככל סדרה בה כל אבר מוגדר באופן רקורסיבי כצירוף לינארי של האברים הקודמים, ניתן לבטא את סדרת פל בנוסחה סגורה על ידי סכום של שתי סדרות הנדסיות:
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P_n=\frac{(1+\sqrt2)^n-(1-\sqrt2)^n}{2\sqrt2}}
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2P_nP_{n+1},P_{n+1}^2-P_n^2,P_{n+1}^2+P_n^2}
שלשות פיתגוריות המושגות בדרך זו הן למשל:
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (4,3,5),(20,21,29),(120,119,169),(696,697,985),\ldots}

סדרת פל-לוקאס

סדרת פל לוקאס מוגדרת על ידי אותה נוסחת רקורסיה כמו סדרת פל, אך יש לה תנאי פתיחה שונים: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P_1=P_2=2} , והיא ממשיכה במספרים 2, 2, 6, 14, 34, 82, 198, 478, ...