לדלג לתוכן

פונקציית זטא

מתוך המכלול, האנציקלופדיה היהודית

בתורת המספרים ובתחומים אחרים במתמטיקה, פונקציית זטא הוא שם לכמה פונקציות החולקות מספר תכונות משותפות עם הדוגמה הראשונה והחשובה ביותר לפונקציה כזו - פונקציית זטא של רימן. המושג אינו מוגדר באופן מדויק, והוא מתייחס בדרך כלל לפונקציות מרוכבות המקיימות את ארבע התכונות הבאות:

  1. מרומורפיות בכל המישור המרוכב.
  2. יש להן פיתוח לטור דיריכלה, בצורה  ζ(s)=n=1anns, המתכנס כאשר החלק הממשי של s גדול מספיק.
  3. יש להן פיתוח למכפלת אוילר, כמו הפיתוח  ζ(s)=p(1bpps)1, כאשר המכפלה היא על-פני המספרים הראשוניים.
  4. הן מקיימות משוואה פונקציונלית, כדוגמת זו הקושרת את  ζ(1s) עם  ζ(s) בפונקציית זטא של רימן.

בין הסוגים החשובים ביותר של פונקציות זטא אפשר למצוא את פונקציות L של דיריכלה, פונקציות זטא של דדקינד, פונקציות L כלליות יותר, שפותחו על ידי ארטין ווייל, ורבות אחרות.

לקריאה נוספת

  • Mathematical Society of Japan's Encyclopedic Dictionary of Mathematics (pp 1372-1392), MIT Press, 1977.

פונקציית זטא34372474Q196822