פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
|
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
אינטגרל קווי (לעתים גם אינטגרל לאורך עקום, אינטגרל מסלולי או אינטגרל מסילתי) הוא אינטגרל המחושב לאורך מסילה במרחב, ולאו דווקא לאורך קטע ממשי. כמו האינטגרל הרגיל, האינטגרל הקווי מסכם ערכים של פונקציה נתונה ומשקלל אותם לפי אורך המסילה, באופן המכליל סיכום של מספר סופי של ערכים. הפונקציה שאת האינטגרל שלה מחשבים עשויה לקבל ערכים ממשיים, או ערכים וקטוריים בכל מרחב בנך (ובכלל זה המרחב האוקלידי). הצורך באינטגרל קווי עולה בעת ניתוח גדלים הקשורים בתנועה במסלול שאינו ישר, או בתכונות פיזיקליות של גוף עקום, כגון חוט דק. בדרך זו, ניתן לחשב גדלים כדוגמת אורך, מסה, או מטען חשמלי. האינטגרל הקווי מחשב כוח הפועל על גוף המיוצג על ידי עקום, או עבודה של כוח המניע מסה לאורכו, כמו גם התנהגות של שדות פיזיקליים (למשל, שדה חשמלי) על פני מסלולים. לאינטגרלים קוויים של פונקציות אנליטיות או הרמוניות ישנן תכונות מתמטיות הקושרות אותם לערכי הפונקציה במשטח שאותו סוגר העקום. בקשרים אלה עוסקים כמה משפטים באנליזה מרוכבת, באנליזה וקטורית ובאנליזה הרמונית. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
גוטפריד וילהלם פון לייבניץ (1 ביולי 1646 בלייפציג – 14 בנובמבר 1716 בהנובר) היה איש אשכולות גרמני שכתב בעיקר בלטינית וצרפתית. הוא התלמד בתחום המשפטים והפילוסופיה, ושירת כמשרת בשני בתי אצולה גרמניים מרכזיים. לייבניץ שיחק תפקיד מרכזי בפוליטיקה ובדיפלומטיה האירופית של תקופתו. הוא בעל מקום בולט גם בהיסטוריה של הפילוסופיה ובהיסטוריה של המתמטיקה. לייבניץ נחשב לאחד מאבות החשבון האינפיניטסימלי אותה פיתח במקביל לניוטון ורבים מהסימנים והמושגים המשמשים היום הענף הם פרי קביעתו. כמו כן, ידוע לייבניץ בשל פיתוח הבסיס הבינארי. לייבניץ היה הראשון לראות שהמקדמים של מערכת משוואות לינאריות יכולים להתארגן במערך, שכעת נקרא מטריצה, אשר ניתן לבצע עליו פעולות עד לקבלת הפתרון של המערכת. כמו כן השתמש גם ברעיון של דטרמיננטה 50 שנה לפני גבריאל קרמר. כמו כן, תרם רבות לתחומי אלגברה בוליאנית ולוגיקה סימבולית. |
|
עריכהתמונה נבחרת
חשבונייה סינית. עקב סיבות גיאופוליטיות, במשך שנים רבות התפתחה התרבות של סין העתיקה עם זיקה מעטה מאד לתרבויות אחרות. המתמטיקה הסינית, בשונה מהמתמטיקה היוונית, הייתה מתמטיקה תכליתית. |
עריכהאנימציה נבחרת
כיסוי האוריינטציות של טבעת מביוס. כיסוי האוריינטציות הוא כלי לחקר יריעות לא אוריינטביליות. עבור משטח במרחב, ניתן לתאר את כיסוי האוריינטציות באופן הבא: נדמיין שהמשטח עשוי מנייר דו-שכבתי. נפריד את השכבות. היריעה שתתקבל תהיה מרחב הכיסוי של כיסוי האוריינטציות. העתקת הכיסוי תהיה ההדבקה של שתי השכבות בחזרה. במקרה של טבעת מביוס (זאת אומרת טבעת עם חצי פיתול) היריעה המתקבלת לאחר הפרדת השכבות היא טבעת עם פיתול שלם. יריעה זאת דיפאומורפית לטבעת רגילה, ובפרט אוריינטבילית. |

המתמטיקאי והלוגיקאי קורט גדל היה בפירוש פלאוטוניסט בהשקפתו המתמטית. גדל התפרסם בעיקר בזכות משפטי האי שלמות שלו, שהשפיע השפעה מכרעת על הלוגיקה המתמטית בפרט ועל המתמטיקה בכלל, שמראים כי יש טענות מתמטיות שלא ניתן להוכיחן או להפריכן ושאי אפשר להוכיח את עקביותה של מערכת המכילה את אקסיומות פאנו, כלומר האקסיומות האריתמטיות הבסיסיות. גדל ראה את הוכחתו כמכת מחץ לפורמליזם וכצידוק לגישתו הפלאוטוניסטית, אך באופן אירוני הוכחתו תרמה רבות לפיתוח הפוסטמודרניזם, בניגוד מוחלט להשקפותיו.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי

חידת מונטי הול: בשעשעון טלוויזיה ישנן שלוש דלתות. מאחורי אחת מהן ישנו פרס גדול, ומאחורי כל אחת משתי האחרות יש עז. המשתתף מתבקש לבחור אחת מהדלתות, אבל לאחר הבחירה מנחה התוכנית אינו פותח את הדלת שנבחרה, אלא את אחת משתי הדלתות האחרות, ומראה למשתתף שמאחוריה יש עז. עכשיו המשתתף יכול לדבוק בבחירה המקורית שלו או להחליף לדלת השלישית שנותרה. מה עדיף לו לעשות?
| פתרון | |
|---|---|
|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: Plus (באנגלית) מגזין אינטרנט בריטי, שנועד לחשוף את הקורא לקסם של המתמטיקה, ועושה זאת בהצלחה רבה, באמצעות מאמרים, ראיונות, חידות ומשחקים. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: איאן סטיוארט, לאַלף את האינסוף - סיפורה של המתמטיקה, ספרי עליית הגג וידיעות ספרים, 2012 זהו מבוא פופולרי מקיף לתולדות המתמטיקה, מראשית ייצוגם של מספרים בפרהיסטוריה ועד להוכחת השערת פואנקרה בתחילת המאה ה-21. המחבר מציין: "רשימת הנושאים שאינם מופיעים בספר ארוכה יותר מרשימת אלה שכן מופיעים בו". תוצאה זו בלתי-נמנעת, בהתחשב ברוחב היריעה של המתמטיקה, אך הספר עוסק בקשת רחבה של נושאים, תוך הצגת המתמטיקאים, העצמים והרעיונות המרכיבים את ההיסטוריה של המתמטיקה. |
|
משפטים מפורסמים
|
השערות מפורסמות
|
משפט המינימקס הוא משפט בתורת המשחקים העוסק במשחק סכום אפס סופי לשני שחקנים. (משחק סכום אפס הוא משחק שבו הרווח של כל משתתף מאוזן במדויק על–ידי ההפסד של המשתתפים האחרים). המשפט קובע כי לכל משחק מסוג זה קיימת דרך פעולה אופטימלית לשחק מבחינת שני השחקנים, כך שהרווח המינימלי של כל אחד אינו תלוי במעשי השני. המשפט הוכח בשנת 1928 על ידי ג'ון פון נוימן. משפט המינימקס נקרא כך כיוון שכל שחקן שואף למקסם את התשלום המינימלי שהוא יכול לקבל מהמשחק, או למזער ("למנם") את ההפסד המקסימלי.
נושאים במתמטיקה
| ||
|---|---|---|
| כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
| שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
| מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
| מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
| מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
| יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
| מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
| עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | |
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|




