פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
|
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
במתמטיקה, מערכת מספרים היא קבוצה של מספרים, או עצמים הדומים למספרים, שמוגדרות בה פעולות אריתמטיות כגון חיבור וכפל. המערכות החשובות ביותר הן קבוצת המספרים הטבעיים, חוג המספרים השלמים, שדה המספרים הרציונליים, שדה המספרים הממשיים ושדה המספרים המרוכבים. עם זאת לשאלה 'מהי מערכת מספרים' אין תשובה מדויקת, וקבוצות כלליות יותר עשויות להחשב למערכות מספרים בהקשר המתאים. סביר להניח שבתחילה רק מספרים טבעיים נחשבו כ'מספרים'. אלו הם מונים של קבוצות סופיות: אחד, שניים, שלושה, ארבעה וכן הלאה. בבית הספר של פיתגורס 'מספר' היה תמיד יחס בין שני מספרים שלמים, כלומר (בשפה המודרנית) מספר רציונלי. מצד שני הפיתגוראים זיהו מספר עם האורך של קטע מתאים, והעדיפו בזה את הגישה הגאומטרית לשאלה 'מהו מספר'. הצורך של הפיתגוראים בהתאמה בין שתי ההגדרות האלה היה חזק כל-כך, עד שלפי האגדה הם זרקו לנהר תלמיד שגילה כי אורך האלכסון של ריבוע שצלעו יחידה אחת (שורש 2 על-פי משפט פיתגורס) אינו מספר רציונלי. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
קרל פרידריך גאוס (גרמנית: Carl Friedrich Gauß, 30 באפריל 1777 – 23 בפברואר 1855) מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים. גאוס מכונה נסיך המתמטיקאים, והוא מוזכר בנשימה אחת יחד עם ארכימדס וניוטון. גאוס תרם רבות בתחומי האלגברה, תורת המספרים, גאודזיה, תורת הכבידה, תורת החשמל והמגנטיות, אסטרונומיה, אופטיקה ועוד. גאוס נולד בבראונשווייג שבסקסוניה תחתית כבן יחיד למשפחת פועלים ענייה. גאוס עצמו סיפר כי עמד על סוד הפעולות האריתמטיות עוד בטרם ידע לדבר. קיימים סיפורים רבים על גאונותו כילד, רובם נחשבים כאגדות. אחד מהם, המובא בספרו של אריק טמפל בל, Men of Mathematics, הוא כי עוד בטרם מלאו לו 3 שנים, נתגלה להוריו כשרונו המתמטי הייחודי: אביו עסק בהכנת גיליון השכר השבועי של הפועלים שבהשגחתו וביצע במשך דקות ארוכות את החישובים המסובכים. כאשר סיים את החישוב, אמר לו בנו שנפלה טעות בחישוב, ונקב בתוצאה שחישב בראשו. |
|
עריכהתמונה נבחרת
![]() בקבוק קליין, מוטבע במרחב התלת־ממדי. בקבוק קליין הוא משטח קומפקטי לא־אוריינטבילי, זאת אומרת שיש לו צד אחד בלבד. למרות שהמשטח הוא דו־ממדי, ודומה למישור בסביבה הקרובה של כל נקודה, הוא אינו ניתן לשיכון במרחב האוקלידי התלת־ממדי, אלא רק במרחב בעל ארבעה ממדים או יותר. |
עריכהאנימציה נבחרת
משפט פיתגורס, הוא אחד מהמשפטים הגאומטריים הנודעים ביותר. הוא קובע שסכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר-זווית, שווה לשטח הריבוע הבנוי על היתר. באנימציה רואים את אחת מההוכחות הרבות למשפט. בעזרת חיתוך ל-4 משולשים ישרי זווית וסידור החלקים מחדש מתקבלת הוכחה של המשפט. |

אף על פי שהוא נראה טריוויאלי, כלל השלישי מן הנמנע, שקובע כי כל טענה בהכרח נכונה או לא נכונה, נדחה על ידי קבוצות בפילוסופיה של המתמטיקה כגון האינטואיציוניזם כשמדובר בקבוצות אינסופיות. גישה זו גורמת לביטול האפשרות להוכחה בדרך השלילה, טכניקה בה הוכחו לראשונה כמה מהמשפטים המתמטיים החשובים ביותר, כמו אי הרציונליות של השורש הריבועי של 2 וקיומם של אינסוף מספרים ראשוניים.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
זהות אוילר. זהות הקושרת בין חמישה קבועים מרכזיים במתמטיקה: 0, 1, i, ו - , באמצעות שלוש פעולות בסיסיות: חיבור, כפל וחזקה.
תרנגולת וחצי מטילה ביצה וחצי ביום וחצי. כמה ביצים מטילה תרנגולת אחת ביום אחד?
| פתרון | |
|---|---|
|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: The Geometry Junkyard (באנגלית) אתר מקסים המרכז הפניות לנושאים הקשורים לשעשועי מתמטיקה גאומטריים ברשת. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: לנסלוט הוגבן (אנ'), מתמטיקה למיליון, הוצאת "ניצנים", שנות ה-50 של המאה ה-20. הספר יצא לאור במקורו באנגלית ב-1936 וזכה לפופולריות רבה. הספר סוקר את התפתחות המתמטיקה מהיוונים ועד למחצית המאה ה-19 בערך, עם דגש על השלכות והשפעת הידע המתמטי על תחומי החיים, כמו ניווט, כלכלה, טכנולוגיה ועוד. לסופר נקודת מבט מרקסיסטית, והספר כתוב בצורה מרתקת. לא מיועד למי שמעוניין ללמוד מתמטיקה מתקדמת, אך מספק נקודת מבט מעניינת, מקורית ומרתקת על ההיסטוריה של מתמטיקה. |
|
משפטים מפורסמים
|
השערות מפורסמות
|
השערת הראשוניים התאומים קובעת שישנם אינסוף זוגות של ראשוניים תאומים, כלומר מספרים ששניהם ראשוניים. השערה זו היא אחת מן הבעיות הפתוחות המפורסמות בתורת המספרים ובמתמטיקה בכלל.
מתמטיקאים מאמינים שאכן ישנם אינסוף זוגות של ראשוניים תאומים, בגלל שורה של נימוקים היוריסטיים המבוססים על תכונות סטטיסטיות של המספרים הראשוניים, ובגלל עדויות מספריות התומכות בהשערת הארדי-ליטלווד. עם זאת, להשערה עדיין אין הוכחה.
נושאים במתמטיקה
| ||
|---|---|---|
| כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
| שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
| מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
| מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
| מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
| יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
| מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
| עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | |
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|






