פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור

קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע ישר, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף.

קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל.

Mug and Torus morph.gif
דוגמה פופולרית בטופולוגיה: דפורמציה רציפה (הומוטופיה) בין ספל קפה וכעך שמדגימה כי שני הגופים הומיאומורפים, לשניהם טופולוגיה של טורוס. למעשה כדי ששני גופים יהיו הומיאומורפים אין צורך בדפורמציה רציפה, מספיק מיפוי והיפוך רציפים. המעבר בין הכעך לספל אינו אלא ארגון מחדש של הירעה מסביב לחור שבכעך בעזרת כיווץ ומתיחה מבלי לקרוע אותה או לחבר חלקים שלא היו מחוברים קודם.
איקוסיטטרהדרון

לכמה מסוגי המינרלים יש מבני גביש מורכבים מאוד. כך למשל למינרלים לוסיט, אנלציט ולכמה מסוגי הגארנט יש מבנה בצורת פאון בעל 24 פאות זהות, שצורתן דלתון הקרוי איקוסיטטרהדרון. למינרל קלציט, המרכיב העיקרי בסלעי הגיר ו"האבן" אותה אנו פוגשים בתחתית הקומקום והסותמת את צינורות המים החמים, יש מבנה פשוט של מעוינון, אבל הוא מצוי בטבע גם כסקלנוהדרון, פאון בעל 12 פאות.

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The MacTutor History of Mathematics archive (באנגלית)

MacTutor הוא האתר האולטימטיבי למתעניינים בהיסטוריה של המתמטיקה. האתר מכיל מאות ביוגרפיות של מתמטיקאים, עשרות רבות של ערכים על נושאים בהיסטוריה של המתמטיקה, ערכים על עקומות מפרסמות, אגודות, פרסים ועוד. את האתר הקימו שני סקוטים נדיבים, פרופסורים למתמטיקה באוניברסיטת סנט אנדרוז, ג'ון אוקונור ואדמונד רוברטסון.

קורט גדל

קורט גדלגרמנית: Kurt Gödel)‏ (28 באפריל 1906 - 14 בינואר 1978) היה לוגיקן אוסטרי (ואחר-כך אמריקני) מגדולי הלוגיקנים של כל הזמנים.

גדל נולד ב-28 באפריל 1906 בעיר ברנו שבאימפריה האוסטרו-הונגרית (כיום בצ'כיה), לאב שהיה מנהל מפעל טקסטיל. בגיל 18 התחיל גדל את לימודיו באוניברסיטת וינה, שם לקח קורסים בפיזיקה, במתמטיקה ובפילוסופיה, כשבסופו של דבר התמקד בלוגיקה מתמטית והיה חבר בחוג הווינאי. בשנת 1930 סיים את עבודת הדוקטורט שלו, שבה הוכיח את שלמותו של תחשיב פסוקים מסדר ראשון. טענה זו ידועה בשם משפט השלמות של גדל.

מראשית ימי המתמטיקה ועד למאה העשרים פעלו המתמטיקאים מתוך תחושה שכל טענה מתמטית ניתנת להוכחה או, לחלופין, להפרכה (כלומר להוכיח שאינה נכונה). בשנת 1931 הוכיח גדל, במאמרו "על טענות שאינן ניתנות להוכחה בפרינציפיה מתמטיקה ובמערכות דומות", שלתחושה זו אין כל בסיס, וברבות מהמערכות האקסיומטיות, ובפרט אלו שמנסות למדל את האריתמטיקה, קיימות טענות שלא ניתן להוכיח או להפריך. הוכחה זו זכתה לשם משפטי האי שלמות של גדל, משפט שהוא אבן הפינה של הלוגיקה המתמטית המודרנית וזיכה את גדל בכינוי "מקלקל האריתמטיקה".

מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Mathematics, poetry and beauty.jpg

רון אהרוני, מתמטיקה, שירה ויופי, הוצאת הקיבוץ המאוחד, 2008

מחבר הספר, רון אהרוני, הוא פרופסור למתמטיקה בטכניון, שעסק גם בכתיבת שירה. בספר הוא מציג רעיונות מרכזיים במתמטיקה, תוך שהוא קושר אותם לטכניקות מקובלות בכתיבת שירה, וחותר להצגת מאפייני היופי שבשני התחומים. רעיונות המתמטיקה מומחשים בשלל דוגמאות מעניינות, וטכניקות השירה מומחשות אף הן בציטוטי שירים.

פתיל השהיה

לרשותכם שני פתילי השהיה, שכל אחד מהם בוער במשך שעה בדיוק. הפתילים אינם בוערים בקצב קבוע, ולכן אם נחתוך את הפתיל לשניים, שני החצאים לאו דווקא יבערו במשך חצי שעה כל אחד. כיצד ניתן בעזרת שני הפתילים למדוד 3/4 שעה?


משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

השערת הראשוניים התאומים קובעת שישנם אינסוף זוגות של ראשוניים תאומים, כלומר מספרים ששניהם ראשוניים. השערה זו היא אחת מן הבעיות הפתוחות המפורסמות בתורת המספרים ובמתמטיקה בכלל.

מתמטיקאים מאמינים שאכן ישנם אינסוף זוגות של ראשוניים תאומים, בגלל שורה של נימוקים היוריסטיים המבוססים על תכונות סטטיסטיות של המספרים הראשוניים, ובגלל עדויות מספריות התומכות בהשערת הארדי-ליטלווד. עם זאת, להשערה עדיין אין הוכחה.

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

תורת המשחקים היא ענף של המתמטיקה והכלכלה המנתח מצבי עימות או שיתוף פעולה בין מקבלי החלטות בעלי רצונות שונים, כדוגמת המצבים המתעוררים במשחקי לוח שונים, בהם כל אחד מהשחקנים רוצה לנצח, ובפעילות כלכלית, בה כל אחד מהעוסקים שואף להגיע לרווח מקסימלי. מצבים כאלו מכונים משחקים, והמשתתפים בהם – שחקנים. חקירה של משחק מורכב מתאפשרת על ידי הפשטתו לאחד מכמה מודלים כלליים, הניתנים לניתוח מתמטי. המטרה היא "לפתור" את המשחק, כלומר, לזהות בו את דרכי הפעולה הצפויות של השחקנים או להצביע על דרכי פעולה מומלצות לשחקנים בודדים או לקבוצות של שחקנים. לניבוי נכון של התנהגות השחקנים עשויה להיות חשיבות מעשית רבה. בחירה נבונה של כללי הצבעה, למשל, צריכה להביא בחשבון את האפשרות של הצבעה טקטית (אסטרטגית), ותכנון של תשתית הכבישים צריך להביא בחשבון את בחירות המסלול של הנהגים בשעות העומס.

שיטות ומושגים מתורת המשחקים תופסים מקום של כבוד בענפי הכלכלה השונים ובמנהל עסקים ומשמשים גם במדעי חברה אחרים, כמו מדע המדינה ופסיכולוגיה, וכן במשפטים. תורת המשחקים משמשת גם בענפי ביולוגיה שונים, בעיקר בחקר התנהגות ואסטרטגיות אבולוציוניות של יצורים חיים. בשנים האחרונות גובר העניין בתורת המשחקים במדעי המחשב. התפתחות זו קשורה לחשיבותם הגוברת של רשתות מחשבים, ובמיוחד רשת האינטרנט. בציבור הכללי, המודעות הגדלה לתורת המשחקים מתבטאת בחדירה של מושגים הלקוחים מתחום זה, כמו משחק סכום אפס, לשפה המדוברת. תרמו לכך כמה ספרים פופולריים שנכתבו בזמן האחרון, ובמיוחד נפלאות התבונה, ביוגרפיה של המתמטיקאי ג'ון נאש, מחלוצי תורת המשחקים, שעובדה בשנת 2001 לסרט קולנוע מצליח.

P computing.svg P At sign.png P physics-2.png P chemistry.svg P Economy.png P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים