פורטל:מתמטיקה
המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה. ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין. באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
סר אייזק ניוטון (אנגלית: Isaac Newton; 4 בינואר 1643 – 31 במרץ 1727 היה פיזיקאי, מתמטיקאי, אסטרונום, פילוסוף ואלכימאי אנגלי, הנחשב לאחד מגדולי המוחות המדעיים בכל הזמנים. חיבורו "עקרונות מתמטיים של פילוסופיית הטבע" שפורסם ב-1687, הכיל תיאור של כוח הכבידה ושלושת חוקי התנועה, והניח את הבסיס למכניקה הקלאסית ששלטה בראייה המדעית של היקום הפיזיקלי במשך שלוש המאות הבאות ויצרה את הבסיס להנדסה המודרנית. ניוטון נחשב לאבי החשבון האינפיניטסימלי, הציג לראשונה את משפט הבינום המוכלל (אשר נקרא על שמו – הבינום של ניוטון), המתאר את טור טיילור של הפונקציה גם כאשר אינו שלם, הוא פיתח והציג את זהויות ניוטון, שיטת ניוטון-רפסון למציאה נומרית של שורשי פונקציה, התורה של פולינומים ממעלה שלישית בשני משתנים, תרם תרומות חשובות לתורה של הפרשים סופיים והיה הראשון שהשתמש באינדקסים חלקיים ובגאומטרית קוארדינטות כדי לגזור פתרונות למשוואה דיופנטית. ניוטון החל גם לפתח את חשבון הווריאציות, תחום שקיבל שם זה רק במאה ה-18. כמו כן גילה נוסחה חדשה לחישוב π. |
עריכהתמונה נבחרת
ההכללה למשפט פיתגורס מוזכרת כבר ב"יסודות" של אוקלידס; אם על צלעותיו של משולש ישר-זווית מונחות צורות דומות, סכום השטחים שעל שני הניצבים שווה לשטח הצורה שעל היתר.
בצורה פורמלית יותר: אם על צלעות משולש ישר-זווית שאורכי צלעותיו הם בונים צורות ששטחיהן A,B,C כך ש , אזי A+B=C. |
עריכהאנימציה נבחרת
סרטון של זום לתוך קבוצת מנדלברוט, קבוצה של מספרים מרוכבים אשר הגבול של ייצוגן הגאומטרי מהווה את אחת הדוגמאות המוכרות ביותר של פרקטלים במתמטיקה. |
שלשת המספרים היא לא רק השלשה הפיתגורית שאיבריה הקטנים ביותר במספרים טבעיים, כי אם גם היחידה שאיבריה עוקבים במספרים שלמים. השלשה הנוספת שאיבריה עוקבים הנה . ניתן לוודא טענה זו על ידי פתירת המשוואה .
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.
האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?
פתרון | |
---|---|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: NRICH (באנגלית) אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: איאן סטיוארט, תיבת האוצרות המתמטיים של פרופסור סטיוארט, כנרת זמורה-ביתן דביר, 2012 כאשר היה פרופ' איאן סטיוארט, מתמטיקאי בריטי ידוע, בן ארבע עשרה, החל לרשום בפנקס רעיונות מתמטיים שנראו לו מעניינים ושלא נלמדו בבית הספר. עד מהרה נזקק לפנקס חדש, ובסופו של דבר לארונית שלמה. מתוכם, ברר סטיוארט כ-180 חידות, רעיונות, סיפורים ובדיחות מתמטיות, הפרוסות על פני כ-310 עמודים. בסוף הספר ישנן פתרונות לכל החידות עם מעט הסברים. סגנון הכתיבה החופשי אפשר לסטיוארט להביא את דבריו באופן קליל, אשר יובנו גם למי שאינו עוסק בתחום ואינו מכיר את השיטות המתמטיות ודרכי ההוכחה מקובלות במחקר. כפעם בפעם הוא מפנה לאתרי אינטרנט העוסקים בנושא הפרק שבו הוא דן, אך לרוב הוא אינו מפנה לביבליוגרפיה והמעוניינים בכך יצטרכו לחפש בעצמם. |
משפטים מפורסמים
|
השערות מפורסמות
|
המשפט האחרון של פרמה הוא משפט מפורסם בתורת המספרים שאותו ניסח המתמטיקאי פייר דה פרמה באמצע המאה ה-17, והוא נותר כבעיה פתוחה עד שהוכח על ידי אנדרו ויילס בשנת 1995. במשך כ-350 שנים היה לאחת הטענות המפורסמות ביותר בעולם המתמטיקה שלא הוכחו.
המשפט טוען כי:
עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: . |
נושאים במתמטיקה
| ||
---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט |
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|