פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
|
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע ישר, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף. קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
פיתגורס (ביוונית: Πυθαγόρας), פילוסוף ומתמטיקאי יווני, חי כמשוער בין השנים 496-582 לפני הספירה. מייסד האסכולה הפיתגוראית, שהייתה קהילה דתית-פילוסופית שהאמינה שאפשר לתאר את כל העולם ביחסים מתמטיים בין מספרים טבעיים, ודגלה באורח-חיים של פשטות המוקדש לעיון והתבוננות, ובצמחונות. בני אסכולה זו נמנים עם הפילוסופים הקדם-אליאטים. פיתגורס גילה שקיים יחס מספרי בין אורכי המיתרים ובין הצלילים המפיקים מהם, ושניתן לתרגם את תנועת הכוכבים לנוסחה מתמטית. מכאן הסיק שניתן לתרגם כל דבר למספרים ושכל דבר הוא התגלמות של מספר או נוסחה מספרית. פיתגורס ייחס חשיבות רבה ללימודי הגאומטריה, אך המסורת היוונית ייחסה את ראשיתה דווקא לתאלס. רק במסורת הרומית, המאוחרת יותר, זכה פיתגורס למעמד של ממציא המתמטיקה ומחבר לוח הכפל. כיום זכור בעיקר על-פי משפט פיתגורס, הנקרא על שמו. |
|
עריכהתמונה נבחרת
ציור של לוקה פאצ'ולי מלמד, מיוחס ליאקופו דה ברברי מ-1495. השולחן מלא בכלים גאומטריים: לוח צפחה, גיר, מחוגה, הספר שכתב ודגם של דודקהדרון. רומביקובוקטהדרון שחציו מלא במים תלוי מהתיקרה. פאצ'ולי מדגים משפט מתמטי של אוקלידס. |
עריכהאנימציה נבחרת
|

הכרך האחרון מבין שלושה עשר כרכי חיבורו החשוב של אוקלידס, יסודות, עסק בחמשת הפאונים המשוכללים, והופיעה בו הוכחה לכך שהם הפאונים המשוכללים היחידים. אפלטון קישר בין היותם של חמישה גופים כאלו לחמשת יסודות הטבע בעיניו- ארבעון לאש, קובייה לאדמה, תמניון לאוויר, עשרימון למים ואת התריסריון בן שתים עשרה הפאות לגלגל המזלות. קישור שכזה בין העולם המתמטי לטבע יכול להיראות מופרך לקורא המודרני, אך גם ב-1596 האסטרונום יוהאנס קפלר פרסם חיבור בו טען שמסלוליהם של ששת כוכבי הלכת שהיו ידועים בזמנו הם למעשה כדורים, החוסמים ונחסמים באחד מהגופים האפלטוניים, כלומר ברווחים שבין המסילות של כוכבי הלכת לשמש ניתן להכניס בדיוק את אחד הגופים המשוכללים.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
ארבע צפרדעים עומדות בארבע פינות של ריבוע שאורך צלעו מטר אחד. כל צפרדע יכולה לקפוץ מעל כל אחת מהצפרדעים האחרות - כך שהיא תנחת בדיוק באותו המרחק מצדה השני. הצפרדעים יכולות לקפוץ זו מעל זו בכל סדר שיבחרו ומספר בלתי מוגבל של פעמים. האם הצפרדעים יכולות להגיע למצב בו הן עומדות בארבע הפינות של ריבוע שאורך צלעו שני מטרים?
| פתרון | |
|---|---|
|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: קשר חם קשר חם הוא האתר של המרכז הארצי לקידום שיפור וריענון החינוך המתמטי, והוא מכיל שפע מאמרים בכל תחומי המתמטיקה, פורומים, וכן אוסף קישורים נרחב לאתרי מתמטיקה. האתר מיועד לעוסקים בחינוך מתמטי בישראל, וגם תלמידים ימצאו בו עניין רב. האתר פועל היטב באינטרנט אקספלורר, אך אינו מתפקד כראוי בפיירפוקס. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: דונל או'שיי, השערת פואנקרה, אריה ניר הוצאה לאור, 2008 הספר מספר את סיפורו של המתמטיקאי הצרפתי אנרי פואנקרה, מגדולי המתמטיקאים של מפנה המאה, שבשנת 1904 ניסח את השערת פואנקרה - השערה בתחום הטופולוגיה, שעל הניסיונות להוכיחה עמלו מתמטיקאים כמעט מאה שנים. בסדרה של מאמרים שכתב בשנים 2002 ו-2003, הציג המתמטיקאי הרוסי-יהודי גריגורי פרלמן את קווי המתאר של הוכחה להשערה, והפרטים החסרים הושלמו בשנים שלאחר מכן בידי מתמטיקאים אחרים. |
|
משפטים מפורסמים
|
השערות מפורסמות
|
השערת גולדבך היא השערה בתורת המספרים, שלפיה כל מספר זוגי גדול מ-4 ניתן להציג כסכום של שני מספרים ראשוניים.
השערת גולדבך נבדקה באמצעות מחשב ונמצאה נכונה לכל מספר עד . ההערכה המקובלת היא שההשערה נכונה, בהתבסס על התפלגותם של המספרים הראשוניים: ככל שמספר זוגי גדול יותר, כך סביר יותר שניתן להציגו כסכום של שני ראשוניים. מובן שזו אינה הוכחה.
נושאים במתמטיקה
| ||
|---|---|---|
| כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
| שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
| מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
| מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
| מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
| יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
| מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
| עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | |
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|







