לדלג לתוכן

פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


משולש על משטח בגאומטריה היפרבולית. פיתוח הגאומטריה הלא אוקלידית העקבית במאה ה-19 הדגיש את חשיבותו של השימוש באקסיומות כנגד החשיבה האינטואיטיבית.
משולש על משטח בגאומטריה היפרבולית. פיתוח הגאומטריה הלא אוקלידית העקבית במאה ה-19 הדגיש את חשיבותו של השימוש באקסיומות כנגד החשיבה האינטואיטיבית.

הפילוסופיה של המתמטיקה היא ענף של הפילוסופיה העוסק בהנחות היסוד של המתמטיקה ובמשמעותה של המתמטיקה. הפילוסופיה של המתמטיקה מנסה לתת תשובות לשאלות כגון:


אייזק ניוטון
אייזק ניוטון

סר אייזק ניוטון (אנגלית: Isaac Newton;‏ 4 בינואר 164331 במרץ 1727 היה פיזיקאי, מתמטיקאי, אסטרונום, פילוסוף ואלכימאי אנגלי, הנחשב לאחד מגדולי המוחות המדעיים בכל הזמנים.

חיבורו "עקרונות מתמטיים של פילוסופיית הטבע" שפורסם ב-1687, הכיל תיאור של כוח הכבידה ושלושת חוקי התנועה, והניח את הבסיס למכניקה הקלאסית ששלטה בראייה המדעית של היקום הפיזיקלי במשך שלוש המאות הבאות ויצרה את הבסיס להנדסה המודרנית.

ניוטון נחשב לאבי החשבון האינפיניטסימלי, הציג לראשונה את משפט הבינום המוכלל (אשר נקרא על שמו – הבינום של ניוטון), המתאר את טור טיילור של הפונקציה (1+x)α גם כאשר α אינו שלם, הוא פיתח והציג את זהויות ניוטון, שיטת ניוטון-רפסון למציאה נומרית של שורשי פונקציה, התורה של פולינומים ממעלה שלישית בשני משתנים, תרם תרומות חשובות לתורה של הפרשים סופיים והיה הראשון שהשתמש באינדקסים חלקיים ובגאומטרית קוארדינטות כדי לגזור פתרונות למשוואה דיופנטית. ניוטון החל גם לפתח את חשבון הווריאציות, תחום שקיבל שם זה רק במאה ה-18. כמו כן גילה נוסחה חדשה לחישוב π.

בנייה של פתית השלג של קוך, פרקטל שתואר לראשונה על ידי הלגה פון קוך.

אנימציה תלת-ממדית המציגה את היטליו של טסרקט, גוף ארבע ממדי המהווה הכללה של הקובייה התלת ממדית.

לואיס קרול
לואיס קרול

מספרים על לואיס קרול ששלח למלכה ויקטוריה את ספרו "חיבור בסיסי על דטרמיננטים", העוסק במתמטיקה, לאחר שזו כתבה לו כי נהנתה לקרוא את הרפתקאות אליס בארץ הפלאות וביקשה לקבל את חיבורו הבא עם פרסומו. כיום משערים שזו אגדה אורבנית.


מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.


abf(x)dx=f(b)f(a)

γ(f)dr=f(γ(b))f(γ(a))
D(Pdx+Qdy)=D(QxPy)dxdy
U(F)dV=UFdn^,
AFdl=A(×F)dn^
Mdω=Mω


במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.

האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: NRICH (באנגלית)

אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

איאן סטיוארט, תיבת האוצרות המתמטיים של פרופסור סטיוארט, כנרת זמורה-ביתן דביר, 2012

כאשר היה פרופ' איאן סטיוארט, מתמטיקאי בריטי ידוע, בן ארבע עשרה, החל לרשום בפנקס רעיונות מתמטיים שנראו לו מעניינים ושלא נלמדו בבית הספר. עד מהרה נזקק לפנקס חדש, ובסופו של דבר לארונית שלמה. מתוכם, ברר סטיוארט כ-180 חידות, רעיונות, סיפורים ובדיחות מתמטיות, הפרוסות על פני כ-310 עמודים. בסוף הספר ישנן פתרונות לכל החידות עם מעט הסברים.

סגנון הכתיבה החופשי אפשר לסטיוארט להביא את דבריו באופן קליל, אשר יובנו גם למי שאינו עוסק בתחום ואינו מכיר את השיטות המתמטיות ודרכי ההוכחה מקובלות במחקר.

כפעם בפעם הוא מפנה לאתרי אינטרנט העוסקים בנושא הפרק שבו הוא דן, אך לרוב הוא אינו מפנה לביבליוגרפיה והמעוניינים בכך יצטרכו לחפש בעצמם.

משפטים מפורסמים
השערות מפורסמות

השערת רימן היא השערה שהציע בשנת 1859 המתמטיקאי ברנרד רימן, מגדולי המתמטיקאים של אותה עת. לפי ההשערה, החלק הממשי של כל האפסיםלא טריוויאליים) של פונקציה מרוכבת הידועה בשם "פונקציית זטא של רימן" הוא  12. השערה זו, הקשורה קשר עמוק להתפלגות של המספרים הראשוניים, היא מן הבעיות הפתוחות הבולטות ביותר בתורת המספרים ובמתמטיקה בכלל.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה