לדלג לתוכן

פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


המלון של הילברט הוא סיפור שבו השתמש המתמטיקאי הנודע דויד הילברט בהרצאות פופולריות שנתן, והוא בא להמחיש בצורה נאה את התכונות המיוחדות של קבוצות אינסופיות, תכונות מפתיעות למדי למי שמורגל לעסוק רק בקבוצות סופיות.

הסיפור מדבר על בית מלון, שחדריו ממוספרים בסדר עולה: 1, 2, 3, וכו'. להבדיל ממלון רגיל, מספר החדרים במלון זה הוא אינסופי, כלומר לכל מספר טבעי קיים במלון חדר שזה מספרו (קבוצת המספרים הטבעיים היא קבוצה אינסופית אך בת מנייה, כלומר ניתן למנות את אבריה לפי סדרם).

הסיפור מתחיל כאשר כל החדרים במלון תפוסים ואורח חדש, ω, מגיע.


אווריסט גלואה
אווריסט גלואה

אווריסט גלואהצרפתית: Évariste Galois;‏ 25 באוקטובר 1811 - 31 במאי 1832), מתמטיקאי צרפתי, ממייסדי תורת החבורות ומייסדה של תורת גלואה. שני תחומים מרכזיים אלו באלגברה מופשטת פותחו על ידי גלואה עוד בהיותו בשנות העשרה לחייו. גלואה לא זכה בחייו להכרה על עבודתו, שכן נהרג בדו-קרב קודם שהגיע לגיל 21.

הישגו הבולט ביותר היה פתרון בעיה שהטרידה את העולם המתמטי במשך מאות שנים - הוא הוכיח כי במקרה הכללי משוואות פולינומיות ממעלה חמישית ומעלה אינן ניתנות לפתרון באמצעות נוסחה שמערבת את ארבע פעולות החשבון והוצאות שורש בלבד, והראה מתי הדבר בכל זאת אפשרי.

בגיל 16, בלי לדעת על עבודתו של אָבֶּל בראשית הקריירה שלו, האמין לתומו גלואה שגילה את הבלתי אפשרי ופתר את המשוואה הכללית ממעלה החמישית, וחזר על אותו משגה. למשך זמן קצר האמין שחולל את הפלא, אך לבסוף הודה בטעותו. הייתה זו רק אחת משורת תופעות זהות בחייהם של גלואה ואבל, המתמטיקאי הנורווגי הצעיר שמת חסר כל בגיל 26.

ברוקולי בצורת פרקטל, צורה החוזרת על עצמה מספר רב של פעמים כך שככל שנעמיק בה תתגלה אותה התבנית שוב ושוב.

כיסוי האוריינטציות של טבעת מביוס.

כיסוי האוריינטציות הוא כלי לחקר יריעות לא אוריינטביליות. עבור משטח במרחב, ניתן לתאר את כיסוי האוריינטציות באופן הבא: נדמיין שהמשטח עשוי מנייר דו-שכבתי. נפריד את השכבות. היריעה שתתקבל תהיה מרחב הכיסוי של כיסוי האוריינטציות. העתקת הכיסוי תהיה ההדבקה של שתי השכבות בחזרה.

במקרה של טבעת מביוס (זאת אומרת טבעת עם חצי פיתול) היריעה המתקבלת לאחר הפרדת השכבות היא טבעת עם פיתול שלם. יריעה זאת דיפאומורפית לטבעת רגילה, ובפרט אוריינטבילית.


מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.



במשחק בין שני שחקנים, מטרתו של הכלוא לצאת ממעגל ברדיוס 100 מטר, ומטרתו של הסוהר למנוע ממנו את היציאה. על-פי חוקי המשחק, הכלוא מתחיל במרכז המעגל, ובכל שלב מותר לו לבחור כיוון שבו הוא מבקש לצעוד, וללכת צעד שאורכו מטר אחד. קודם לביצוע הצעד, הסוהר קובע האם הכלוא ילך בכיוון שבחר, או בכיוון המנוגד.

האם יצליח הכלוא לצאת מן המעגל? אם כן, כיצד, ובכמה צעדים; ואם לא - מדוע?

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: NRICH (באנגלית)

אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

איאן סטיוארט, תיבת האוצרות המתמטיים של פרופסור סטיוארט, כנרת זמורה-ביתן דביר, 2012

כאשר היה פרופ' איאן סטיוארט, מתמטיקאי בריטי ידוע, בן ארבע עשרה, החל לרשום בפנקס רעיונות מתמטיים שנראו לו מעניינים ושלא נלמדו בבית הספר. עד מהרה נזקק לפנקס חדש, ובסופו של דבר לארונית שלמה. מתוכם, ברר סטיוארט כ-180 חידות, רעיונות, סיפורים ובדיחות מתמטיות, הפרוסות על פני כ-310 עמודים. בסוף הספר ישנן פתרונות לכל החידות עם מעט הסברים.

סגנון הכתיבה החופשי אפשר לסטיוארט להביא את דבריו באופן קליל, אשר יובנו גם למי שאינו עוסק בתחום ואינו מכיר את השיטות המתמטיות ודרכי ההוכחה מקובלות במחקר.

כפעם בפעם הוא מפנה לאתרי אינטרנט העוסקים בנושא הפרק שבו הוא דן, אך לרוב הוא אינו מפנה לביבליוגרפיה והמעוניינים בכך יצטרכו לחפש בעצמם.

משפטים מפורסמים
השערות מפורסמות

משפט ארבעת הצבעים הוא תוצאה בולטת בהיסטוריה של הטופולוגיה הקומבינטורית ושל תורת הגרפים. לפי המשפט, אפשר לצבוע כל מפה מדינית, באופן שכל שתי מדינות בעלות קו גבול משותף נצבעות בצבע שונה, תוך שימוש בארבעה צבעים בלבד. מתמטיקאים החלו לחקור את הבעיה באמצע המאה התשע-עשרה. היא נודעה כ'השערת ארבעת הצבעים', וזכתה ל'הוכחות' שגויות רבות.

צביעה הדורשת לפחות ארבעה צבעים
צביעה הדורשת לפחות ארבעה צבעים

בניסוח מודרני, המשפט מבטיח שלכל גרף מישורי קיימת צביעת קודקודים בארבעה צבעים. אנשי תורת הגרפים מכירים הוכחות קלות יחסית לכך שקיימת צביעה בחמישה צבעים, אבל ההוכחה לכך שאפשר להסתפק בארבעה נמצאה רק ב- 1976, והיא כרוכה בחיפוש ממוחשב על-פני אלפי מקרים. זו הייתה ההשערה המפורסמת הראשונה שהוכחה בעזרת מחשב, ובתחילה לא הייתה הסכמה כללית על תקפות ההוכחה, בעיקר בנימוק שלא הוכחה נכונותן של תוכניות המחשב עצמן. מאז נעשו ניסיונות רבים למצוא הוכחה סטנדרטית יותר, שיכולה לעמוד לביקורת עמיתים. הוכחה כזו עדיין לא נמצאה.

האיור משמאל מציג מפה סכמטית של ארבע מדינות, שלכל אחת מהן יש גבול משותף עם כל האחרות. לכן לא ניתן לצבוע אותה בפחות מארבעה צבעים.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה