פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
![]() יסודות (ביוונית: Στοιχεῖα) הוא חיבור בן שלושה עשר חלקים, שנכתב על ידי המתמטיקאי ההלניסטי אוקלידס בראשית המאה השלישית לפנה"ס. בספר מאורגנים באופן שיטתי הגדרות, אקסיומות ומשפטים בגאומטריה, בתורת המספרים ובאלגברה בסיסית. "יסודות" הוא הספר הקדום ביותר מסוג זה ששרד עד ימינו, והייתה לו השפעה מכרעת על התפתחותם של הלוגיקה, המתמטיקה והמדע בכלל. הספר נחשב לאחד הספרים המצליחים ביותר שנכתבו מאז ומעולם. עותקים של הספר הגיעו מביזנטיום לארצות ערב, ואז תורגמו מערבית ללטינית במאה ה-12. "יסודות" הודפס לראשונה בוונציה ב-1482, במהדורה המבוססת על עותק של ג'ובאני קמפנו משנת 1260, וזכה מאז ליותר מאלף מהדורות דפוס. בין המהדורות ראוי לציון תרגום לעברית שנעשה בעידודו של הגאון מווילנה (האג, תק"ם 1780). מספר עותקים של הטקסט היווני שרדו עד ימינו, ומצויים למשל בספריית הוותיקן ובאוקספורד. עותקים אלה אינם שלמים, ונדרשת עבודה רבה כדי לשחזר את המקור ברמת מהימנות גבוהה. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
![]() סר אייזק ניוטון (אנגלית: Isaac Newton; 4 בינואר 1643 – 31 במרץ 1727 היה פיזיקאי, מתמטיקאי, אסטרונום, פילוסוף ואלכימאי אנגלי, הנחשב לאחד מגדולי המוחות המדעיים בכל הזמנים. חיבורו "עקרונות מתמטיים של פילוסופיית הטבע" שפורסם ב-1687, הכיל תיאור של כוח הכבידה ושלושת חוקי התנועה, והניח את הבסיס למכניקה הקלאסית ששלטה בראייה המדעית של היקום הפיזיקלי במשך שלוש המאות הבאות ויצרה את הבסיס להנדסה המודרנית. ניוטון נחשב לאבי החשבון האינפיניטסימלי, הציג לראשונה את משפט הבינום המוכלל (אשר נקרא על שמו – הבינום של ניוטון), המתאר את טור טיילור של הפונקציה גם כאשר אינו שלם, הוא פיתח והציג את זהויות ניוטון, שיטת ניוטון-רפסון למציאה נומרית של שורשי פונקציה, התורה של פולינומים ממעלה שלישית בשני משתנים, תרם תרומות חשובות לתורה של הפרשים סופיים והיה הראשון שהשתמש באינדקסים חלקיים ובגאומטרית קוארדינטות כדי לגזור פתרונות למשוואה דיופנטית. ניוטון החל גם לפתח את חשבון הווריאציות, תחום שקיבל שם זה רק במאה ה-18. כמו כן גילה נוסחה חדשה לחישוב π. |
עריכהתמונה נבחרת
![]() "קשר טורוס" הוא קשר המלופף על פניו של טורוס. קשר זה מקובל לאפיין על ידי שני מספרים זרים, q ו-p, כאשר q הוא מספר הליפופים על הטורוס ו- p הוא מספר הפעמים בו הוא עובר דרך ה"חור" שבמרכז הטורוס. |
עריכהאנימציה נבחרת
![]()
טורוס הנו גוף סיבוב הנוצר מסיבובו של מעגל סביב לציר הניצב לו אך לא חותך אותו. בתמונה מופיע טורוס עם חור ההולך וגדל עד שהטורוס "בולע" את עצמו.
|

באימפריית האינקה לא נעשה שימוש בכתב. למרות היעדר הכתב, ניהולה של מערכת מדינית כה גדולה דרש צורה מסוימת של אכסון מידע מתמטי (כגון מיסים, כלי נשק, בהמות וכו'). לצורך אכסון המידע המתמטי השתמשו האינקה בכלי הנקרא קִיפּו, מילולית: קשר. הקיפו היה עשוי חבלים כך שאכסון המידע עליו התבצע באמצעות יצירת קשרים עליהם.
(להרחבה ראו היסטוריה של האריתמטיקה)
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
נוסחאות למציאת פתרונות למשוואות פולינומיאליות ממעלות 1 עד 4. השורשים ממעלה שלישית הם אלגבריים, זאת אומרת שניתן להציב במקומם כל אחד משלושת השורשים המרוכבים. עם זאת בשתי הנוסחאות האחרונות, לא כל הצבה כזאת (כמו גם בחירה של הסימן ) תיתן שורש, אבל כל שורש אפשר לקבל כהצבה. הנוסחה האחרונה לא תקפה כשהמכנים מתאפסים, יש נוסחאות שונות למקרים אלה. שתי הנוסחאות האחרונות נחשבות לאחד ההישגים המשמעותיים של המתמטקה של הרנסאנס. בגלל החזרות הרבות, אפשר לפשט משמעותית את שתי הנוסחאות הארחונות אם מכניסים סימוני עזר בשביל חלקים של הנוסחה שחוזרים על עצמם. לפי תורת גלואה, לא ניתן לפתח נוסחאות המבוססות על ארבע פעולות החשבון ושורשים עבור משוואות ממעלה גבוהה יותר.
תרנגולת וחצי מטילה ביצה וחצי ביום וחצי. כמה ביצים מטילה תרנגולת אחת ביום אחד?
פתרון | |
---|---|
|
עריכהאוצרות הרשת
![]() בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: לא מדויק לא מדויק הוא הבלוג של ד"ר גדי אלכסנדרוביץ', שבו עוסק המחבר בקשת רחבה של נושאים, מכל תחומי המתמטיקה ומדעי המחשב. העיסוק הוא מנקודת מבט מתקדמת, אך נעשה מאמץ להנגשתם לציבור רחב ככל האפשר של קוראים. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: ![]() Darrell Huff, How to Lie with Statistics, 1954 ספר קטן זה (124 עמודים במהדורת ספרי פינגווין) הוא מבוא מזורז לסטטיסטיקה, ובפרט לכשלים הרבים האורבים למי שאינו משתמש בה נכון, ולשלל הדרכים שבהם ניתן להשתמש בה לשם הצגת מידע מטעה. כיוון שמידע סטטיסטי משמש פעמים רבות בסיס לקבלת החלטות, הרי הכרת כשלים והטעיות אלה מסייעת לקבלת החלטות טובות יותר. הספר נראה כמדריך לשימוש בסטטיסטיקה למטרות הטעיה, אך המחבר מסביר: "הנוכלים כבר יודעים את כל הטריקים; על אנשים הגונים ללמוד אותם לשם הגנה עצמית". הספר הפך לרב מכר, שמגרסתו המקורית, באנגלית, נמכרו יותר מ-1.5 מיליון עותקים, יותר מכל מכל ספר סטטיסטיקה אחר. ראו גם: יוסי לוי, איך לשקר בעזרת סטטיסטיקה, באתר "נסיכת המדעים" |
משפטים מפורסמים
|
השערות מפורסמות
|

אי שוויון המשולש הוא התרגום האלגברי לעובדה שבמשולש, אורכה של כל צלע קטן מסכום ארכי הצלעות האחרות. אי-שוויון המשולש מבטא את העובדה שלא ניתן לקצר את הדרך מ- A ל- C על ידי מעבר בנקודה B (כלומר: הקו הישר הוא הדרך הקצרה ביותר בין שתי נקודות). בצורתו הפשוטה, עבור זוג מספרים ו- , מתקיים .
זוהי תכונה יסודית כל-כך של מושג ה"מרחק", עד שהיא מהווה אחת מהאקסיומות המגדירות מטריקה ומרחב מטרי. לפיכך, אי שוויון זה נכון, בהכללה, עבור כל נורמה (המושג "נורמה" הוא הכללה של מושג ה"אורך"). בפרט, אי שוויון המשולש האינטגרלי הוא גרסה של אי שוויון המשולש עבור הנורמה האינטגרלית.
נושאים במתמטיקה
| ||
---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט |
ערכים המחפשים עורכים ![]() |
דיונים, ייעוץ ועזרה
|