פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
|
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
במתמטיקה, מערכת מספרים היא קבוצה של מספרים, או עצמים הדומים למספרים, שמוגדרות בה פעולות אריתמטיות כגון חיבור וכפל. המערכות החשובות ביותר הן קבוצת המספרים הטבעיים, חוג המספרים השלמים, שדה המספרים הרציונליים, שדה המספרים הממשיים ושדה המספרים המרוכבים. עם זאת לשאלה 'מהי מערכת מספרים' אין תשובה מדויקת, וקבוצות כלליות יותר עשויות להחשב למערכות מספרים בהקשר המתאים. סביר להניח שבתחילה רק מספרים טבעיים נחשבו כ'מספרים'. אלו הם מונים של קבוצות סופיות: אחד, שניים, שלושה, ארבעה וכן הלאה. בבית הספר של פיתגורס 'מספר' היה תמיד יחס בין שני מספרים שלמים, כלומר (בשפה המודרנית) מספר רציונלי. מצד שני הפיתגוראים זיהו מספר עם האורך של קטע מתאים, והעדיפו בזה את הגישה הגאומטרית לשאלה 'מהו מספר'. הצורך של הפיתגוראים בהתאמה בין שתי ההגדרות האלה היה חזק כל-כך, עד שלפי האגדה הם זרקו לנהר תלמיד שגילה כי אורך האלכסון של ריבוע שצלעו יחידה אחת (שורש 2 על-פי משפט פיתגורס) אינו מספר רציונלי. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
יוליוס וילהלם ריכרד דֵדֵקינד (6 באוקטובר 1831 – 12 בפברואר 1916) היה מתמטיקאי גרמני, מממשיכיו הבולטים של ארנסט קומר. דדקינד נולד בבראונשווייג, והיה הצעיר מבין ארבעת ילדיו של יוליוס לוין אולריך דדקינד. דדקינד מעולם לא השתמש בשני שמותיו הראשונים, וחי עם אחותו הרווקה יוליה עד מותה ב-1914. הוא לא נישא מעולם. בשנת 1848 החל דדקינד בלימודיו בקולג' המלכותי בבראונשווייג. בשנת 1850, מצויד בבסיס מתמטי חזק, החל ללמוד באוניברסיטת גטינגן. באוניברסיטה זו לימד גאוס, וממנו למד דדקינד על תורת המספרים. בין מוריו החשובים של דדקינד היה גם מוריץ אברהם שטרן שכתב באותו זמן עבודות רבות בתורת המספרים. דדקינד הגיש עבודת דוקטורט קצרה בהנחייתו של גאוס שנקראה "Über die Theorie der Eulerschen Integrale" ("על התאוריה של שלמים אוילריים"), אך בעבודה זו לא ניכר הכישרון שייחד את דדקינד בעבודותיו המאוחרות. למרות זאת הכיר גאוס בכישוריו - דדקינד קיבל את הדוקטורט שלו ב-1852 והיה לתלמידו האחרון של גאוס. |
|
עריכהתמונה נבחרת
דטרמיננטה של מטריצה ריבועית היא סקלר התלוי ברכיבי המטריצה, ושווה לאפס בדיוק כאשר המטריצה אינה הפיכה. אם למטריצה ריבועית ישנם מקדמים ממשיים, אזי הדטרמיננטה שלה שווה לנפחו של המקבילון (במרחב האוקלידי ה- -ממדי), שקודקודיו הם עמודות המטריצה. |
עריכהאנימציה נבחרת
|

העיר קניגסברג שבפרוסיה המזרחית (כיום קלינינגרד שברוסיה) הייתה מחולקת לארבעה חלקים על ידי הנהר פרגוליה. שבעה גשרים חיברו בין ארבעת חלקי העיר. בין תושבי העיר התפתחה מסורת לפיה לא ניתן לחצות את כל שבעת הגשרים ולחזור לנקודת ההתחלה מבלי לעבור על אותו גשר יותר מפעם אחת. תושבי העיר ניסו להוכיח או להפריך השערה זו, אולם ללא הצלחה. הבעיה התפרסמה בשם בעיית הגשרים של קניגסברג. המתמטיקאי לאונרד אוילר הצליח לפתור את הבעיה, והציג את פתרונו לאקדמיית סנקט פטרבורג ב-26 באוגוסט 1735. בהוכחתו הוא תיאר את הבעיה באופן סכמטי. כל נקודה ייצגה חלק של העיר, וכל קו ייצג גשר. הוא הראה שמכיוון שמכל נקודה יוצא מספר אי-זוגי של קווים, לא קיים מסלול סגור שעובר דרך כל הקווים. זו אחת הבעיות הראשונות בתורת הגרפים שנפתרו.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
תרנגולת וחצי מטילה ביצה וחצי ביום וחצי. כמה ביצים מטילה תרנגולת אחת ביום אחד?
| פתרון | |
|---|---|
|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: The Geometry Junkyard (באנגלית) אתר מקסים המרכז הפניות לנושאים הקשורים לשעשועי מתמטיקה גאומטריים ברשת. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: לנסלוט הוגבן (אנ'), מתמטיקה למיליון, הוצאת "ניצנים", שנות ה-50 של המאה ה-20. הספר יצא לאור במקורו באנגלית ב-1936 וזכה לפופולריות רבה. הספר סוקר את התפתחות המתמטיקה מהיוונים ועד למחצית המאה ה-19 בערך, עם דגש על השלכות והשפעת הידע המתמטי על תחומי החיים, כמו ניווט, כלכלה, טכנולוגיה ועוד. לסופר נקודת מבט מרקסיסטית, והספר כתוב בצורה מרתקת. לא מיועד למי שמעוניין ללמוד מתמטיקה מתקדמת, אך מספק נקודת מבט מעניינת, מקורית ומרתקת על ההיסטוריה של מתמטיקה. |
|
משפטים מפורסמים
|
השערות מפורסמות
|
המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי (נקרא גם המשפט היסודי של החשבון האינפיניטסימלי) קושר בין שני מושגי היסוד של החשבון האינפיניטסימלי, הנגזרת והאינטגרל, ומראה שגזירה ואינטגרציה הן פעולות הופכיות זו לזו: אם פונקציה רציפה עוברת אינטגרציה ואחר כך גוזרים את התוצאה, חוזרים לפונקציה המקורית. פרט לקשר זה, המשפט גם מספק שיטה מעשית לחישוב האינטגרל המסוים, שהוא מושג שמוגדר בצורה שאינה מאפשרת חישוב פשוט, באמצעות האינטגרל הלא מסוים, שלחישובו יש דרכים רבות.
המשפט היסודי של החשבון האינפיניטסימלי קובע שאינטגרל מסוים בין שתי נקודות שווה להפרש הערכים של האינטגרל הלא המסוים שלה בנקודות אלו. לכאורה שני מושגים אלה שונים זה מזה ובאים מעולמות שאין להם שום קשר אבל המשפט היסודי של החשבון האינפיניטסימלי (שנקרא גם משפט ניוטון-לייבניץ) קובע את הקשר העמוק בין שני התחומים.
נושאים במתמטיקה
| ||
|---|---|---|
| כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
| שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
| מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
| מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
| מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
| יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
| מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
| עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | |
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|






