פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

חזקה היא פעולה מתמטית המתבצעת בין שני מספרים ומסומנת . בצורתה הבסיסית ביותר, כאשר הוא מספר טבעי, החזקה שווה ל- מופעים של הנכפלים זה בזה. את ההגדרה הבסיסית הזו ניתן להרחיב למערכות מספרים רבות, ואף לעצמים מתמטיים שאינם בהכרח מספרים, תוך שמירה על תכונותיה הבסיסיות הייחודיות של הפעולה, הנקראות חוקי חזקות.

לחזקה תפקיד מרכזי בתחומים רבים במתמטיקה. השערות ומשפטים הקשורים בפעולה העסיקו מתמטיקאים במשך מאות שנים. פונקציות המבוססות על פעולת החזקה, כגון פולינומים ופונקציות מעריכיות, משמשות בכל תחומי המדעים. בשל כך פותחו שיטות המאפשרות חישוב חזקות באופן יעיל, במקום הכפלה חוזרת שעשויה לקחת זמן רב.

ריכרד דדקינד, תצלום משנת 1850 לערך

יוליוס וילהלם ריכרד דֵדֵקינד (6 באוקטובר 183112 בפברואר 1916) היה מתמטיקאי גרמני, מממשיכיו הבולטים של ארנסט קומר.

דדקינד נולד בבראונשווייג, והיה הצעיר מבין ארבעת ילדיו של יוליוס לוין אולריך דדקינד. דדקינד מעולם לא השתמש בשני שמותיו הראשונים, וחי עם אחותו הרווקה יוליה עד מותה ב-1914. הוא לא נישא מעולם.

בשנת 1848 החל דדקינד בלימודיו בקולג' המלכותי בבראונשווייג. בשנת 1850, מצויד בבסיס מתמטי חזק, החל ללמוד באוניברסיטת גטינגן. באוניברסיטה זו לימד גאוס, וממנו למד דדקינד על תורת המספרים. בין מוריו החשובים של דדקינד היה גם מוריץ אברהם שטרן שכתב באותו זמן עבודות רבות בתורת המספרים. דדקינד הגיש עבודת דוקטורט קצרה בהנחייתו של גאוס שנקראה "Über die Theorie der Eulerschen Integrale" ("על התאוריה של שלמים אוילריים"), אך בעבודה זו לא ניכר הכישרון שייחד את דדקינד בעבודותיו המאוחרות. למרות זאת הכיר גאוס בכישוריו - דדקינד קיבל את הדוקטורט שלו ב-1852 והיה לתלמידו האחרון של גאוס.

EulerLine.svg
ישרים חשובים במשולש: ישר אוילר באדום, אנכים אמצעיים בצהוב, תיכונים בכחול וגבהים בירוק.
Pythagoras-2a.gif

משפט פיתגורס, הוא אחד מהמשפטים הגאומטריים הנודעים ביותר. הוא קובע שסכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר-זווית, שווה לשטח הריבוע הבנוי על היתר. באנימציה רואים את אחת מההוכחות הרבות למשפט. בעזרת חיתוך ל-4 משולשים ישרי זווית וסידור החלקים מחדש מתקבלת הוכחה של המשפט.

איקוסיטטרהדרון

לכמה מסוגי המינרלים יש מבני גביש מורכבים מאוד. כך למשל למינרלים לוסיט, אנלציט ולכמה מסוגי הגארנט יש מבנה בצורת פאון בעל 24 פאות זהות, שצורתן דלתון הקרוי איקוסיטטרהדרון. למינרל קלציט, המרכיב העיקרי בסלעי הגיר ו"האבן" אותה אנו פוגשים בתחתית הקומקום והסותמת את צינורות המים החמים, יש מבנה פשוט של מעוינון, אבל הוא מצוי בטבע גם כסקלנוהדרון, פאון בעל 12 פאות.

מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.

Tower of Hanoi.jpeg

במשחק מגדלי האנוי נקרא לסידור של הדיסקיות 'מצב חוקי' אם אף דיסקית אינה מונחת מעל דיסקית קטנה ממנה. עבור מגדל עם n דיסקיות, כמה מצבים חוקיים ישנם? האם ניתן מהמצב ההתחלתי הנראה בציור, להגיע לכל מצב חוקי?


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: CryptoKids (באנגלית)

ה-CIA הוא אחד מהשירותים החשאיים הידועים ביותר בעולם, אך יש שירות חשאי גדול ממנו, NSA, שהוא ארגון המודיעין הגדול בעולם. באופן מפתיע, גאוות הארגון אינה סוכנים מסוגו של ג'יימס בונד, אלא מתמטיקאים העוסקים בפענוח המסרים המוצפנים שאוסף הארגון ברחבי תבל. NSA הוא המעסיק הגדול ביותר של מתמטיקאים בעולם, וכדרך ליצירת מאגר של עובדים עתידיים הוא מציג אתר זה ובו חידות מתמטיות לילדים. לפני שאתם ממהרים לפתור את החידות שמופיעות שם, ענו בבקשה על חידה מקדימה: האם פתרון של חידה באתר של NSA מהווה יצירת מגע עם סוכן זר, עבירה שעונשה מאסר ממושך?

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Shapira-infinity1.png

אינסוף - המסע שאינו נגמר, חיים שפירא, הוצאת כנרת 2010

הספר "אינסוף - המסע שאינו נגמר", שכתב חיים שפירא ב-2010, עוסק במתמטיקה ונועד להנגיש את המתמטיקה לקהל הרחב. הספר כולל סימונים מתמטיים, הוכחות (נדיר בספרי מתמטיקה פופולרית) ואף תרגילי מחשבה מתמטיים לקורא, חלקם קלים יותר וחלקם קשים מאוד. שפירא מתבל את הספר בהומור, אנקדוטות, מידע היסטורי, אמרות כנף וקריקטורות של המאייר דני קרמן, על מנת להנגיש את המתמטיקה לקהל רחב, ולהפוך את קריאת הספר לקלילה וזורמת.

הספר מחולק לשלושה חלקים וכל חלק הוא בנושא אחר במתמטיקה. נושאי הספר הם:

  1. "מבוא למחשבה", ובו מספר חידות מתמטיות ובעיות פתורות הבאות להדגים את החשיבה המתמטית ולגרות את הקורא לפתור את חלקן בעצמו.
  2. תורת המספרים, ובו סוקר שפירא משפטים מוכחים ובעיות פתוחות בתורת המספרים, החל מפיתגורס, עבור בסדרת פיבונאצ'י וכלה במשפט האחרון של פרמה. חלק זה כולל לצד אנקדוטות, מידע היסטורי, ציטוטים והומור גם הוכחות מתמטיות ותרגילי מחשבה לקורא, חלקם קשים.
  3. תורת הקבוצות הנאיבית ובפרט עוצמות אינסופיות ופרקטלים. חלק זה נפתח עם הפרדוקסים של זנון וגרסאות נוספות של פרדוקסים אלה, אך מרכז החלק הוא ואריאציה עם הומור על המלון של הילברט ובו הוכחות שקבוצות המספרים הטבעיים החיוביים ממש, הטבעיים זוגיים, השלמים והרציונליים בנות מנייה ואילו הממשיים לא. גם בחלק זה משבץ שפירא הומור ותרגילי מחשבה לקורא.
משפטים מפורסמים
השערות מפורסמות

אי-שוויון הממוצעים הוא אי-שוויון מפורסם הקושר בין הממוצע החשבוני והממוצע גאומטרי של סדרה סופית של מספרים. זהו אי-שוויון בסיסי באנליזה מתמטית, ויש לו שימושים חשובים והכללות רבות. את אי-השוויון גילה והוכיח אוגוסטן לואי קושי, וברבות השנים התגלו עשרות הוכחות אחרות.

באותו שם נקרא גם אי שוויון בין הממוצע ההנדסי לממוצע ההרמוני; יחדיו, טוענים שני אי-השוויונות שלכל קבוצה של מספרים ממשיים חיוביים, מתקיים

כלומר הממוצע ההרמוני קטן או שווה לממוצע ההנדסי, והממוצע ההנדסי קטן או שווה לממוצע החשבוני. בשני המקרים לא מתקיים שוויון, אלא אם כל המספרים שווים זה לזה.

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט
P computing.svg P At sign.png P physics-2.png P chemistry.svg P Economy.png P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל?רשימת כל קטגוריות המשנה והערכים