טופולוגיית סדר
מראה
	
	
|  | ערך ללא מקורות | |
| ערך ללא מקורות | |
בטופולוגיה, לכל קבוצה סדורה ביחס סדר מלא קיימת טופולוגיה טבעית המכונה טופולוגיית הסדר, והיא זו הנוצרת על ידי התת-בסיס של הקבוצות מהצורה:
עבור כל .
באופן שקול, זו גם הטופולוגיה הנוצרת על ידי הבסיס שמורכב מקבוצות מהצורה:
עבור כל .
דוגמאות
- הטופולוגיה הרגילה על הישר הממשי היא טופולוגיית הסדר ביחס לסדר הסטנדרטי שלו.
- עבור הסודר (הסודר האינסופי השני), טופולוגיית הסדר המוגדרת עליו הופכת אותו למרחב קומפקטי.
טופולוגיית סדר31192666Q1321469
 
	 
		 
	
