מצב קוונטי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

מצב קוונטי הוא אוסף פרמטרים של מערכת במכניקת הקוונטים. ישנן מספר דרכים מתמטיות ליצג מצב קוונטי, כשנפוצות ביותר הן פונקציית גל, וקטור מצב ומטריצת צפיפות, ומספר דרכים לרשום אותו כשהדרך הנפוצה ביותר היא סימון דיראק: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle | \psi \rangle} . עקב התכונות הייחודיות של מכניקת הקוונטים, מצב של מערכת קוונטית שונה מבחינות רבות ממערכת קלאסית. לדוגמה, עיקרון הסופרפוזיציה קובע שמצב קוונטי יכול להיות צירוף של מספר מצבים קונטיים אחרים בו-זמנית.

משמעות המושג

המצב הקוונטי נותן תיאור מלא של כל המשתנים הדינמים של מערכת, כשכל האפיונים הקבועים שלה נתונים. לדוגמה המצב של חלקיק יתאר את מיקומו ואת התנע שלו בהנחה שמסתו ידועה. במכניקת הקוונטים כל האינפורמציה (על המשתנים הדינמים) נמצאת במצב אך ידיעת המצב אינה בהכרח מאפשרת ליחס ערך ודאי למשתנים אלו, בשל עקרון האי-ודאות. קביעה זו נובעת מהתיאור של מכניקת הקוונטים את המציאות. בתיאור זה משתנה של מערכת יכול להיות בסופרפוזיציה של ערכים ואין משמעות הדבר שיש לו את אחד הערכים אך הוא לא ידוע. לדוגמה חלקיק הנמצא בסופרפוזיציה של מיקומים שונים אינו שקול לחלקיק הנמצא באחד מהמיקומים אך איננו יודעים באיזה.

מדידות

מצב קוונטי משמש לניבוי והסבר של תופעות פיזיקליות רבות הנצפות בניסויים. הקשר בין המצב לתוצאות המדידות נתון על ידי חוק בורן, שנותן את ההסתברות לתוצאה מסוימת לפי המצב הקוונטי. כלומר, אם משתנה כלשהו הוא בסופרפוזיציה של ערכים שונים, לא נוכל לדעת מה יהיה הערך שנקבל כשננסה למדוד אותו, אלא רק את הסיכוי לקבל כל ערך. מכך גם נובע שלא ניתן למדוד את המצב הקוונטי ישירות, כלומר, אין דרך לחלץ את כל האינפורמציה על מצבה של מערכת בודדת.

משתנים חבויים

טיבעה החדשני של מכניקת הקוונטים הניע פיזיקאים לחשוב שקיימת אינפורמציה נוספת שאינה נכללת במצב הקוונטי. סוג זה של אינפורמציה נקרא משתנים חבויים. ההנחה היא שישנו תיאור בסיסי יותר של המערכת באמצעות משתנים אחרים האומר מהו המצב האמיתי וממנו יהיה ניתן להסיק בוודאות את תוצאות כל מדידה. בגישה זאת, המצב הקוונטי הוא רק תיאור אפקטיבי הנובע מכך שאיננו יודעים את המשתנים החבויים ואת החוקים המנחים אותם. בעקבות משפט בל התברר שכדי שמשתנים חבויים יתאימו לתורת הקוונטים הם אינם יכולים לקיים את עקרון המקומיות.

הצגה וסימונים

כדי לתאר מערכת צריך אוסף מספרים לפי כמות דרגות החופש של המערכת לכן כל אוסף כזה יכול לייצג את המצב הקוונטי. דוגמאות לאוספים כאלו המסודרים במבנה מתמטי הן וקטור מצב, פונקציית גל, מטריצת צפיפות, שתי הזוויות של כדור בלוך או שני מספרים, m ו-l, המציינים את התנע הזוויתי.

פעמים רבות כתיבת המספרים, גם בצורת משתנים או וקטור, היא מסורבלת ואינה תורמת להבנת הרעיון או החישוב הנידונים ולכן סימון דיראק המיצג מצב קוונטי כללי ללא פרטים שאינם נחוצים, הוא שימושי למדי. סימון זה גם תואם את הפורמליזם הנפוץ של מכניקת הקוונטים.

מצבי בסיס

ניתן לבטא כל מצב קוונטי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} כצירוף לינארי (סופרפוזיציה) של מצבי בסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |k_i\rangle}

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle | \psi \rangle = \sum_i c_i | k_i \rangle}

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ c_i} הם הקבועים המייצגים את המשרעת (אמפליטודה), וריבוע הערך המוחלט של האמפליטודה, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left | c_j \right | ^2} הוא ההסתברות שבמדידה בבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |k_i\rangle} המערכת תימצא במצבהפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ k_j} .

תנאי הנירמול של פונציית הגל מכתיב שסכום ההסתברויות יהיה

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_i \left | c_i \right | ^2 = 1} .

בסיס פשוט להבנה הוא הבסיס העולה מחקר מתנדים הרמוניים קוונטיים. במערכת זו לכל מצב בסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |n\rangle} יש אנרגיה

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle E_n = \hbar \omega \left(n + {\begin{matrix}\frac{1}{2}\end{matrix}}\right)} .

את שאר מצבי הבסיס ניתן לקבל על ידי אופרטור יצירה ואופרטור השמדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ a} :

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a^{\dagger}|n\rangle=c_{n,n+1}|n+1\rangle, \quad a|n\rangle=c_{n,n-1}|n-1\rangle }

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ c_{n,n\pm 1}} הם קבועים המשמשים לנירמול.

מצבים עצמיים

מצב עצמי הוא מצב של המערכת שאינו משתנה תחת הפעלת אופרטור מסוים. בניסוח אלגברי, מצב עצמי הוא וקטור עצמי של האופרטור. המצבים העצמיים של אופרטור הרמיטי מהווים בסיס שלם, ומאפשרים לפרוס כל מצב של המערכת בעזרת צירוף לינארי שלהם.[1]

דוגמאות

משוואת שרדינגר היא משוואה למציאת המצבים העצמיים של ההמילטוניאן (אופרטור האנרגיה). הפתרונות שלה הם המצבים העצמיים של ההמילטוניאן, והם מצבים שאינם משתנים בזמן, כלומר מצבים יציבים, והערכים העצמיים של האופרטור הם האנרגיה של מצבי המערכת.

דוגמה אחרת היא אופרטור מדידת התנע הזוויתי. המצבים העצמיים שלו הם הפתרונות של מצבים שאינם משתנים לאחר סיבוב, כלומר מצבים בעלי סימטריה כדורית, ונקראים הרמוניות ספריות.

במודל אטום המימן, האורביטלים (הקליפות האלקטרוניות) הם מצבים עצמיים של ההמילטוניאן ושל אופרטור התנע הזוויתי (מכיוון שהוא איזוטרופי, כלומר סימטרי לסיבובים).

הגדרה פורמלית

בהינתן אופרטור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat A} המצב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\psi\rang \neq 0} יקרא מצב עצמי של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat A} אם קיים מספר מרוכב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \lambda} כך ש:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat A| \psi\rang = \lambda |\psi \rang}

כאשר המספר המרוכב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \lambda} נקרא ערך עצמי של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat A}

עבור אופרטור הרמיטי מתקיים כי הערכים עצמיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \lambda_i} ממשיים וכל המצבים העצמיים של האופרטור ההרמיטי מהווים בסיס אורתונורמלי ושלם.

מצבים טהורים ומעורבים

מצב טהור הוא מצב שניתן לתיאור כוקטור אחד, או סכום של וקטורי בסיס. מצב מעורב הוא מצב המורכב מהתפלגות סטטיסטית של מצבים טהורים כלומר שמצב אינו סופרפוזיציה של מצבי בסיס, אלא אחד מהתפלגות סטטיסטית של מצבים.

ערך התוחלת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \langle a \rangle} של גודל מדיד הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A} עבור מערכת במצב טהור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ |\psi\rangle} ניתן על ידי

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \langle a \rangle = \langle \psi | A | \psi \rangle = \sum_i a_i \langle \psi | \alpha_i \rangle \langle \alpha_i | \psi \rangle = \sum_i a_i | \langle \alpha_i | \psi \rangle |^2 = \sum_i a_i P(\alpha_i)}

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ |\alpha_i\rangle} הם מצבים עצמיים של האופרטור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ A} , ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ P(\alpha_i)} היא ההסתברות שבמדידת מערכת במצב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ | \psi \rangle} , תוצאת המדידה תהא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ a_i } והמערכת תהא במצב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ |\alpha_i\rangle} .

כדי לתאר התפלגות סטטיסטית של מצבים טהורים, כלומר מצב מעורב, יש להשתמש במטריצת צפיפות,הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \rho} . בכך מורחבת מכניקה קוונטית למכניקה סטטיסטית קוונטית. מטריצת צפיפות מוגדרת כך:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \rho = \sum_s p_s | \psi_s \rangle \langle \psi_s |}

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ p_s} הוא שבר של כל צבר במצב הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ |\psi _{s}\rangle } . הממוצע מעל הצבר של מדידת הגודל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} על המערכת במצב מעורב הוא:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left [ A \right ] = \langle \overline{A} \rangle = \sum_s p_s \langle \psi_s | A | \psi_s \rangle = \sum_s \sum_i p_s a_i | \langle \alpha_i | \psi_s \rangle |^2 = tr(\rho A)}

כאשר חשוב לשים לב ששני סוגי ממוצעים מתרחשים כאן, האחד הוא הממוצע מעל הבסיס הווקטורי של המצבים הטהורים, והשני הוא הממוצע הסטטיסטי מעל הצבר של המצבים הטהורים.

ראו גם

קישורים חיצוניים

הערות שוליים

  1. R. Fitzpatrick, Quantum Mechanics course