צירוף ליניארי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באלגברה לינארית, צירוף לינארי הוא סכום של מספר סופי של וקטורים שכל אחד מהם מוכפל בסקלר. בגלל סגירותו של המרחב הווקטורי ביחס לחיבור וכפל בסקלר, הצירוף הלינארי אף הוא וקטור השייך לאותו מרחב וקטורי. בהינתן קבוצה מתאימה של וקטורים - קבוצה פורשת - ניתן לכתוב כל וקטור במרחב כצירוף לינארי של איברים מתוך הקבוצה.

מבחינה פורמלית, צירוף לינארי מוגדר כך. בהינתן סדרה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,v_1,v_2,...,v_k} של וקטורים במרחב, וסדרה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,\alpha_1,\alpha_2,...,\alpha_k} של סקלרים, נקרא לביטוי

צירוף לינארי של הווקטורים. בקיצור ניתן לכתוב הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{k}\alpha_i v_i}

קבוצה תיקרא תלויה לינארית אם קיים בה וקטור שהוא צירוף לינארי של וקטורים אחרים מהקבוצה. או באופן שקול, קבוצה היא תלויה לינארית אם קיים צירוף לינארי לא טריוויאלי של איבריה (לא כל הסקלרים אפס) ששווה לווקטור האפס.

בהתאם לכך וקטור האפס יהיה תמיד צירוף לינארי של כל קבוצת וקטורים, וכשהוא יינתן בתוך קבוצה אזי הקבוצה תהיה תלויה לינארית.