משפט ההעתקה של רימן

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה מרוכבת, משפט ההעתקה של רימן (Riemann mapping theorem) קובע כי כל תחום פשוט קשר מרוכב (פתוח) השונה מ־ שקול קונפורמית לעיגול היחידה הפתוח.

המשפט מהווה תוצאה חזקה, אשר לה מסקנות רבות בתורת הפונקציות ההולומורפיות. אינטואיטיבית, הוא קובע שכל תחום פשוט קשר, מסובך כמה שיהיה, שקול לעיגול היחידה באופן אנליטי המשמר תכונות רבות – כמו שינוי בזוויות. המשפט מאפשר להסיק תכונות על תחומים פשוטי קשר שונים על ידי מחקר תכונות של עיגול היחידה, אובייקט די פשוט.

נקרא על שם המתמטיקאי הגרמני ברנהרד רימן.

ניסוח

יהי תחום פשוט קשר. אז קיימת פונקציה הולומורפית חד־חד־ערכית ועל

העתקה כזו היא העתקה קונפורמית (זו אחת ההגדרות השקולות להעתקה קונפורמית על המישור המרוכב), כלומר כל תחום פשוט קשר שאיננו כל שקול קונפורמית לעיגול היחידה.

מגרסה "חזקה" יותר של המשפט ניתן להסיק כי הפונקציה גם יחידה כאשר קובעים נקודה שתלך לאפס. פורמלית, בהינתן , קיימת פונקציה יחידה כנ"ל המקיימת גם .

הוכחת המשפט איננה טריוויאלית כלל, ומערבת משפטים לא פשוטים רבים:

  • למת שוורץ.
  • קיום שורש אנליטי לפונקציה לא מתאפסת בתחום פשוט קשר, הנובע מקיום לוגריתם טבעי לפונקציה לא מתאפסת בתחום פשוט קשר.
  • משפט מונטל, הקובע כי לכל סדרת פונקציות הולומורפיות חסומות יש תת-סדרה מתכנסת במידה שווה על כל תת־קבוצה קומפקטית.
  • משפט הורוויץ, הקובע כי אם סדרת פונקציות שלא מתאפסות מתכנסת במידה שווה על כל תת־קבוצה קומפקטית, אז פונקציית הגבול היא או אפס זהותית, או לא מתאפסת כלל.

אפשר לשים לב שהמשפט לא נכון עבור , זאת משום שאז הפונקציה תהיה שלמה וחסומה, ולכן לפי משפט ליוביל – קבועה.

מסקנות ושימושים

המשפט מהווה תוצאה חזקה מאוד בתחום האנליזה המרוכבת, ויש לו תוצאות חשובות רבות:

  • כל שני תחומים פשוטי קשר ב- (השונים ממנו) שקולים קונפורמית. בפרט נובע שהם הומיאומורפיים.
  • כל תחום פשוט קשר במישור המרוכב הוא כוויץ (שכן הוא שקול קונפורמית (ובפרט הומוטופי) לעיגול היחידה, שהוא כוויץ).
  • התכונות הבאות שקולות לתחום פתוח וקשיר:
– התחום פשוט קשר.
– התחום פשוט קשר אנליטית (זהו תחום בו אינטגרל של כל פונקציה הולומורפית על כל מסילה סגורה הוא אפס).
– לכל פונקציה שלא מתאפסת בתחום יש לוגריתם אנליטי.
– לכל פונקציה שלא מתאפסת בתחום יש שורש אנליטי מכל סדר טבעי.
  • משפט קרתיאודורי – אם תחום פשוט קשר החסום על ידי עקומת ז'ורדן, אז ניתן להרחיב את ההעתקה הקונפורמית באופן הומיאומורפי לשפה – .
  • המשפט קובע כי בין תחום פשוט קשר (לא כל המרחב) לבין עיגול היחידה קיימת שקילות קונפורמית, אך איננו אומר דבר על בנייתה המפורשת. הצגת פונקציה מפורשת היא בעיה לא פשוטה כלל – גם במקרים בהם יש מיון מלא, כמו במקרה של מצולע שלא חותך את עצמו, הפונקציות דיי מסובכות – ראו העתקות שוורץ-קריסטופל.

לקריאה נוספת

  • Complex Analysis, Stein & Sharkarchi, 224-228

קישורים חיצוניים

ויקישיתוף ראו מדיה וקבצים בנושא זה בוויקישיתוף.

סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0