משפט ליוביל (אנליזה מרוכבת)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה מרוכבת, משפט ליוביל אומר כי פונקציה מרוכבת שלמה (כלומר, פונקציה שהולומורפית בכל המישור המרוכב) וחסומה חייבת להיות קבועה.

בין שימושיו של משפט זה ניתן למנות הוכחה אלגנטית של המשפט היסודי של האלגברה והוכחה אלגנטית לכך שספקטרום של אופרטור איננו ריק.

גרסה מוקדמת של המשפט הוכחה לראשונה על-ידי ז'וזף ליוביל ב-1847 והמשפט המלא הוכח על-ידי אוגוסטן לואי קושי.

הוכחה

הוכחת המשפט מבוססת על שימוש בנוסחת האינטגרל של קושי. באמצעות הנוסחה מעריכים את הנגזרת של הפונקציה בכל נקודה. בשל שלמות הפונקציה, ערך הנגזרת נתון על-ידי אינטגרל סגור על מעגל סביב הנקודה שמחשבים את הנגזרת בה. ערך האינטגרל הולך וקטן כאשר מגדילים את רדיוס המעגל, וערך הנגזרת קטן מערך האינטגרלים על כל אחד מהמעגלים, ומכאן מסיקים כי בהכרח ערך הנגזרת הוא 0. מכיוון שערך הנגזרת של הפונקציה הוא 0 בכל נקודה, היא חייבת להיות קבועה.

על-פי נוסחת קושי מתקיים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align}f'(z)=\frac1{2\pi i}\oint\limits_{|t-z|=R}\frac{f(t)}{(t-z)^2}dt\end{align}}

נפעיל ערך מוחלט על שני האגפים:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align}|f'(z)|=\left|\frac1{2\pi i}\oint\limits_{|t-z|=R}\frac{f(t)}{(t-z)^2}dt\right|\le\frac1{2\pi}\oint\limits_{|t-z|=R}\frac{|f(t)|}{(t-z)^2}|dt|\le\frac1{2\pi}\oint\limits_{|t-z|=R}\frac{M}{R^2}|dt|\end{align}}

המעבר האחרון מוצדק בכך שהפונקציה שלנו חסומה, כלומר מתקיים לכל נקודה במישור עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M} מסוים, ובכך שאנו לוקחים את האינטגרל על מעגל, ולכן מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |t-z|=R} .

אינטגרל של פונקציה קבועה על מעגל שווה להיקפו, ולכן נקבל:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align}\frac1{2\pi}\oint_{|t-z|=R}\frac{M}{R^2}|dt|=\frac1{2\pi}\cdot\frac{M\cdot2\pi R}{R^2}=\frac{M}{R}\end{align}}

וזה נכון עבור כל מעגל שניקח סביב הנקודה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle z} , משום שהפונקציה הולומורפית בכל המישור.

לכן קיבלנו כי לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \varepsilon>0} קיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R} גדול דיו כך שיתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |f'(z)|\le\frac{M}{R}<\varepsilon} , ולכן בהכרח הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |f'(z)|=0} , דבר המתקיים רק כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(z)=0} .

הכללות וחיזוקים

  • תהי שלמה, ולכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r>0} נגדיר:
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M_f(r)=\underset{|z|=r}\max|f(z)|\ ,\ A_f(r)=\underset{|z|=r}\max\Big|\text{Re}\big(f(z)\big)\Big|}
אם קיימים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle C>0,a>0} ממשיים כך שמתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M_f(r)\le Cr^a,r\to\infty} או הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_f(r)\le Cr^a,r\to\infty} ,
אז הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} פולינום ממעלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lfloor a\rfloor}הערך השלם של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a} (משפט ליוביל מתקבל כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a=0} ).
  • מסקנה נוספת מהנ"ל, הידועה כמשפט הדמר, היא – אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f} פונקציה שלמה ללא אפסים ומתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M_f(r)\le C^{r^a},r\to\infty} עם , אזי היא מהצורה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(z)=e^{p(z)}} כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} פולינום ממעלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lfloor a\rfloor} (המשפט מתקבל מהנ"ל עם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \log(f)} ).
  • המשפט הקטן של פיקארד מחזק את משפט ליוביל. הוא קובע כי כל פונקציה שלמה ולא קבועה מקבלת כל ערך במישור המרוכב מלבד אולי ערך אחד (למשל פונקציית האקספוננט מקבלת כל ערך מלבד 0).
  • המשפט נכון גם עבור פונקציות הולומורפיות בכמה משתנים, כלומר – פונקציה הולומורפית בכמה משתנים אשר חסומה היא קבועה.
  • כל פונקציה הולומורפית על משטח רימן קומפקטי היא בהכרח קבועה (שכן מהקומפקטיות נובע שהפונקציה חסומה).

ראו גם