פונקציית בסל

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
Incomplete-document-purple.svg יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.

במתמטיקה, פונקציית בסל היא פתרון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y(x)} למשוואה דיפרנציאלית הנקראת משוואת בסל:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+(x^2-p^2)y=0}

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} קבוע (ממשי או מרוכב) הנקרא הסדר של פונקציית בסל. ברוב המקרים במדע הוא מספר שלם או חצי-שלם.

משוואת בסל מופיעה בתחומים רבים בפיזיקה בהן תופעה בעלת סימטריה גלילית או כדורית מתוארת על ידי משוואה דיפרנציאלית הכוללת את אופרטור הלפלסיאן. בין אלה ניתן למנות את משוואת לפלס באלקטרומגנטיות, משוואת החום המתארת זרימת חום, משוואת שרדינגר במכניקת הקוונטים ותבנית עקיפה בסדק עגול.

פונקציית בסל הוגדרה לראשונה על ידי המתמטיקאי דניאל ברנולי והוכללה על ידי פרידריך בסל.

פונקציית בסל מהסוג הראשון

פונקציות בסל מהסוג הראשון

בפתרון משוואת בסל כטור חזקות (לפי שיטת (טור) פרוביניוס) מתקבלת פונקציית בסל מהסוג הראשון

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_p(x)=\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n+p+1)}{\left({\frac{x}{2}}\right)}^{2n+p}}

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} , הקבוע במשוואת בסל, הוא דרגת פונקציית בסל ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Gamma(z)} פונקציית גמא.

פתרון נוסף מתקבל בשיטה זו על ידי החלפת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle -p}  :

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_{-p}(x)=\sum_{n=0}^\infty\frac{(-1)^n}{\Gamma(n+1)\Gamma(n-p+1)}{\left(\frac{x}{2}\right)}^{2n-p}}

אם איננו שלם, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_p(x),J_{-p}(x)} הם שני פתרונות בלתי-תלויים למשוואת בסל, שהיא משוואה דיפרנציאלית מסדר שני, ולכן צירוף לינארי שלהם הוא הפתרון הכללי למשוואת בסל. אך כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} מספר שלם, ניתן להראות שמתקיים הקשר:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_{-p}(x)=(-1)^pJ_p(x)}

במקרה כזה הפתרונות אינם בלתי-תלויים, והפתרון הנוסף הוא פונקציית בסל מהסוג השני.

תכונות פונקציית בסל

  • הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_p(x=0)=0} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} , למעט הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_0(x=0)=1} .
  • עבור p חצי שלם, ניתנת להבעה באמצעות פונקציות טריגונומטריות. כך, למשל:
הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_\frac12(x)=\sqrt{\frac{2}{\pi x}}\sin(x)}

שורשי פונקציית בסל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_{p,n}} הנם הנקודות בהן פונקציית בסל מדרגה מתאפסת. אין נוסחה אנליטית לקבלתם, אך בפיזיקה ובתחומי ההנדסה נוהגים להניח מספר הנחות לגביהם שטרם הוכחו באופן פורמלי:

  • שורשי פונקציות בסל אינם מחזוריים.
  • עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} טבעי, לפונקציה יש מספר אינסופי של שורשים.
  • לפונקציות בעלות דרגות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} שונות אין שורשים משותפים מלבד זה שב- .

יחסי נסיגה:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align}J_{p-1}(x)+J_{p+1}(x)=\frac{2p}{x}J_{p}(x)\\J_{p-1}(x)-J_{p+1}(x)=2\frac{d}{dx}J_{p}(x)\end{align}}

יחסי אורתוגונליות:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\limits_0^1xJ_p(xu_{p,m})J_p(xu_{p,n})dx=\frac{\delta_{m,n}}{2}[J_{p+1}(u_{p,m})]^2=\frac{\delta_{m,n}}{2}[J_p'(u_{p,m})]^2}

כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \delta_{m,n}} הדלתא של קרונקר.

פונקציית בסל מהסוג השני

שגיאה ביצירת תמונה ממוזערת:
פונקציית נוימן

פונקציית בסל מהסוג השני, הנקראת גם פונקציית נוימן או פונקציית וובר, היא פתרון שני של משוואת בסל מדרגה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} שהיא מספר לא-שלם, והיא מתבדרת ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x=0} . הפונקציה מסומנת בדרך כלל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_p(x)} והיא מוגדרת:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_p(x)=\frac{J_p(x)\cos(p\pi)-J_{-p}(x)}{\sin(p\pi)}}

עבור דרגה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p=n} שהיא מספר שלם מגדירים את פונקציית בסל מהסוג השני להיות הגבול:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N_n(x)=\lim_{p\to n}N_p(x)}

הפתרון הכללי למשוואת בסל מדרגה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} יכול אם כן להיכתב בצורה הבאה:

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_p(x)=AJ_p(x)+BN_p(x)}