משלים (מתמטיקה)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת הקבוצות, משלים של קבוצה G (באנגלית: G complement of set) הוא קבוצה אחרת, אשר מכילה את כל האיברים שאינם נמצאים ב-G. זאת ביחס לקבוצה U כלשהי שהיא "הקבוצה האוניברסלית" - קבוצה שבהקשר הנוכחי של הדיון, כל קבוצה שעליה נדבר היא תת קבוצה של U.

על-פי הגדרה זו, האיחוד של קבוצת G והמשלים של G הוא הקבוצה U, ואילו החיתוך ביניהן הוא קבוצה ריקה.

הגדרה פורמלית

דיאגרמת ון של המשלים של G בקבוצת U הוא השטח המסומן בצבע אפור.

תהא U קבוצה, ותהא GU קבוצה חלקית שלה. אז המשלים של G ב-U יוגדר כך: G=UG. סימונים מקובלים נוסף למשלים הם G, UG, G, G. עם זאת, הסימון G מתנגש לעיתים עם שימושים אחרים של הסימון בקו עליון, ולכן מקובל להימנע ממנו.

דוגמה

תהא קבוצה N המכילה את כל המספרים הטבעיים 1,2,3,....

תהא קבוצה A המכילה רק את המספרים הטבעיים הזוגיים 2,4,6.... הקבוצה B היא המשלים של A ביחס ל-N אם היא מכילה את המספרים המוכלים ב-N אך לא ב-A, כלומר את המספרים הטבעיים האי זוגיים 1,3,5....

ניתן לראות כי החיתוך של A עם B נותן קבוצה ריקה, בעוד שאיחודן יוצר את הקבוצה N.

תכונות בסיסיות

A=A, כלומר המשלים של המשלים של קבוצה הוא הקבוצה עצמה.

AA=, כלומר, חיתוך קבוצה והמשלים שלה שווה לקבוצה הריקה.

AA=U, כלומר, איחוד קבוצה והמשלים שלה שווה לקבוצה האוניברסלית.

U=, כלומר המשלים של הקבוצה האוניברסלית הוא הקבוצה הריקה.

=U, כלומר המשלים של הקבוצה הריקה הוא הקבוצה האוניברסלית.

כללי דה מורגן

כללי דה מורגן קושרים את הפעולות "איחוד", "חיתוך", "משלים". בכתיב פורמלי הם מוצגים כך:

(AB)=AB
(AB)=AB


קישורים חיצוניים

  • משלים, באתר MathWorld (באנגלית)
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

משלים (מתמטיקה)40099995Q242767