משפט האפסים של הילברט

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, ובמיוחד באלגברה ובגאומטריה אלגברית, משפט האפסים של הילברטגרמנית: Nullstellensatz – "משפט האפסים") הוא משפט המקשר בין יריעות אלגבריות לבין אידאלים בשדות סגורים אלגברית. הוא הוכח לראשונה על ידי דויד הילברט.

נניח כי K הוא שדה סגור אלגברית (למשל, שדה המספרים המרוכבים), ונניח כי I הוא אידאל בחוג הפולינומים ב-n משתנים מעל Kהפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,K[x_1,\dots,x_n]} . היריעה האפינית (V(I מוגדרת להיות אוסף כל הנקודות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,\mathbf{x}=(x_1,\dots,x_n) \in K^n} כך שלכל f ב-I מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,f(\mathbf{x})=0} .

משפט האפסים של הילברט קובע כי אם p הוא פולינום כלשהו המקיים שלכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x \in V(I)} מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,p(x)=0} (כלומר p מתאפס על היריעה (V(I) אז קיים מספר טבעי r כך ש הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p^r \in I} .

מסקנה מיידית ממשפט זה היא משפט האפסים החלש הקובע כי אם I הוא אידאל ממש (כלומר אינו שווה לחוג כולו), אז הקבוצה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,V(I)} אינה ריקה, כלומר קיימת נקודה x שהיא אפס משותף לכל הפולינומים בI. מסקנה זו היא במובן מסוים הכללה של המשפט היסודי של האלגברה: בשדה סגור אלגברית, לא זו בלבד שלכל פולינום יש לפחות שורש אחד, אלא גם לכל קבוצת פולינומים שאינה יוצרת (כאידאל) את החוג כולו יש לפחות אפס משותף אחד.

בסימונים המקובלים בגאומטריה האלגברית, נהוג לכתוב את משפט האפסים של הילברט כך: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,I(V(J)) = \sqrt{J}} לכל אידאל J. הסימון הוא הרדיקל של J המוגדר להיות אוסף האיברים בחוג שחזקה חיובית כלשהי שלהם שייכת ל-J, ו-(I(Z הוא אידאל כל הפולינומים שמתאפסים על הקבוצה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Z \subset K^n} .

גרסאות שונות של המשפט

הניסוח הנפוץ למשפט האפסים של הילברט הוא זה המופיע בהקדמה. יחד עם זאת, יש למשפט גרסאות נוספות אשר שימושיות בהקשרים שונים. ניתן לחלק את הגרסאות השונות לגרסאות "שקולות" ולגרסאות "חלשות". את הסוג הראשון ניתן להסיק יחסית בקלות מהנוסח המקורי של המשפט, וניתן גם להסיק את המשפט המקורי מהניסוח - ולכן מכונות שקולות. את הגרסאות החלשות, לעומת זאת, ניתן להסיק מהנוסח המקורי, אך יחסית קשה יותר להסיק את המשפט מהן. אחת מהדרכים להסיק את הגרסה המקורית של המשפט מתוך הגרסאות החלשות היא הטריק של רבינוביץ', אשר מנוסח בהמשך.

גרסה שקולה

מערכת שיוויונות ואי-שוויון

גרסה שקולה למשפט האפסים של הילברט היא כלהלן. נניח כי K הוא שדה סגור אלגברית ויהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m \in K[x_1,\ldots,x_n]} פולינומים כך שמערכת המשוואות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1(\mathbf{x}) = \ldots = f_m(\mathbf{x}) = 0} פתירה מעל K. יהיה g פולינום כך שלמערכת הבאה אין פתרון ב-K:הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle .~\begin{cases} f_1(\mathbf{x}) = \ldots = f_m(\mathbf{x}) = 0\\ g(\mathbf{x}) \neq 0 \end{cases}} אזי, קיימים פולינומים הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle h_{1},\ldots ,h_{m}\in \,K[x_{1},\ldots ,x_{n}]} ומספר טבעי r, כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h_1f_1+\ldots+h_mf_m = g^r} . זאת אומרת, קיים עד לכך שהמערכת הנתונה אינה פתירה.

ניתן להראות כי גרסה זו שקולה לניסוח המקורי של המשפט בצורה הבאה: נשים לב שהתנאי על הפולינום g שקול לכך שלכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x \in V(\langle f_1,\ldots,f_m \rangle)} מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,g(x)=0} . בנוסף, קיים מספר טבעי r כך ש אם ורק אם קיימים פולינומים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h_1,\ldots,h_m \in \,K[x_1,\ldots,x_n]} , כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h_1f_1+\ldots+h_mf_m = g^r} . לכן, גרסה זו שקולה למשפט האפסים עבור אידאלים מהצורה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I = \langle f_1,\ldots,f_m \rangle} . ממשפט הבסיס של הילברט, לכל אידאל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I \triangleleft K[x_1,\ldots,x_n]} קיימים פולינומים כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I = \langle f_1,\ldots,f_m \rangle} ולכן הגרסאות שקולות.

גרסאות חלשות

הגרסאות הבאות מכונות "חלשות" כיוון שניתן להסיק אותן בקלות מהנוסח המקורי של המשפט, אך לא להפך. אף על פי כן, גרסאות אלו מספיקות לשימושים רבים.

שורת סתירה

גרסה חלשה למשפט האפסים של הילברט, המוכרת גם כמשפט האפסים החלש היא כלהלן:

משפט- יהיה K שדה סגור אלגברית, ויהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J \triangleleft K[x_1,\ldots,x_n]} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(J) = \phi} . אזי, .

כלומר, בשדה סגור אלגברית, לכל מערכת משוואות פולינומית בכל כמות סופית של משתנים יש פתרון כאשר אין שורת סתירה (כאשר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1} איננו צירוף של איברי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J} ). כאמור לעיל, זוהי הכללה של המשפט היסודי של האלגברה.

ניתן להסיק גרסה זו מהנוסח המקורי באופן הבא: יהי אידאל J כך שמתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(J) = \phi} , אזי מתקיים גם כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I(V(J)) = K[x_1,\ldots,x_n]} . ממשפט האפסים, , ובפרט קיים r טבעי כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 = 1^r \in J} , ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J = K[x_1,...,x_n]} .

אידאלים מקסימליים

גרסה חלשה נוספת מאפיינת את האידאלים המקסימליים בשדות סגורים אלגברית.

משפט - נניח כי K הוא שדה סגור אלגברית, אזי האידאלים המקסימלים של החוג הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,K[x_1,\dots,x_n]} הם בדיוק האידאלים: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,\langle x_1-a_1,x_2-a_2,\dots,x_n-a_n \rangle} .

במילים אחרות, ישנה התאמה חד-חד-ערכית ועל בין קבוצת האידאלים המקסימליים של חוג זה לבין קבוצות הנקודות של המרחב האפיני ה-n-ממדי.

ניסוח זה נובע מהניסוח הקודם. אכן, יהיה J אידאל מקסימלי ובפרט הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J \neq K[x_1,\ldots,x_n]} . מהניסוח הקודם קיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbf{a} = (a_1,\ldots,a_n) \in V(J)} . נגדיר הומומורפיזם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \varphi_{{a}} : K[x_1,\ldots,x_n] \rightarrow K} על ידי הצבה בנקודה a, זאת אומרת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \varphi_{{a}}(f) = f({\mathbf{a}})} . מתקיים כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Im}(\varphi_{{a}}) = K} , ולכן, ממשפט האיזומורפיזם, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K[x_1,\ldots,x_n] / \ker(\varphi_{{a}}) \cong K} . כיוון ש-K הוא שדה, אזי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ker(\varphi_{{a}})} הוא אידאל מקסימלי, וממקסימליות J נסיק כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J = \ker(\varphi_{{a}}) = \langle x - a_1,\ldots, x - a_n \rangle} .

הניסוח שורת סתירה נובע מניסוח זה באופן הבא: יהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J \neq K[x_1,\ldots,x_n]} אידאל ויהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I \supset J} אידאל מקסימלי המכיל אותו. מהניסוח עבור אידאלים מקסימליים נסיק כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I = \langle x - a_1, \ldots, x - a_n \rangle} ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (a_1,\ldots,a_n) \in V(I) \subset V(J)} , ובפרט הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(J) \neq \phi} .

פתרון למערכות פולינומים בהרחבת שדות

ניסוח חלש נוסף הוא הניסוח הבא, אשר מאפיין פתרונות למערכות פולינומים:

משפט - יהיה K שדה ויהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m \in K[x_1,\ldots,x_n]} פולינומים. נניח כי קיימת הרחבת שדות L/K, כך שקיימים איברים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_1,\ldots,y_n \in L} , עבורם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(y_1,\ldots,y_n) = 0} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} . אזי קיימת הרחבת שדות סופית K'/K ואיברים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_1,\ldots,x_n \in K'} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(x_1,\ldots,x_n) = 0} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} .

במילים אחרות, אם קיים פתרון למערכת בהרחבת שדות כלשהי, אז קיים פתרון בהרחבה סופית. בפרט, אם השדה K סגור אלגברית, נקבל כי קיום פתרון בהרחבה כלשהי גורר קיום פתרון בשדה K.

ניסוח זה נובע משורת סתירה, נראה זאת עבור המקרה בו השדה K סגור אלגברית: נניח כי לא קיים שורש משותף למערכת הפולינומים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m } . משורת סתירה, נקבל כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1} הוא צירוף של הפולינומים הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle f_{1},\ldots ,f_{m}} , ולכן לא קיים פתרון באף הרחבת שדות.

ניתן גם להסיק את שורת סתירה ממשפט זה: יהי J אידאל ויהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m \in K[x_1,\ldots,x_n]} פולינומים כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J = \langle f_1,\ldots,f_m \rangle} . באופן מידי נקבל שקיים פתרון למערכת הפולינומים באלגברה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,K[x_1,\dots,x_n]} . יהיה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m \triangleleft K[x_1,\ldots,x_n]} אידאל מקסימלי, אז קיים גם פתרון במנה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F = R[x_1,\ldots,x_n] / m} . ממקסימליות m נקבל כי F שדה, ובנוסף הוא נוצר סופית כאלגברה, כיוון שממשפט הבסיס של הילברט הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,K[x_1,\dots,x_n]} מקיים תכונה זו. מהמשפט, כיוון ש-K סגור אלגברית, נקבל כי קיים פתרון למערכת הפולינומים בשדה K.

הלמה של זריצקי

הלמה הבאה, הידועה כלמה של זריצקי, שקולה לגרסאות החלשות למשפט האפסים.

למה - יהיה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K} שדה, לא בהכרח סגור אלגברית, ותהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F/K} הרחבת שדות של K. נניח כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} נוצר סופית כאלגברה מעל K, אזי F נוצר סופית כשדה הרחבה של K.

הטריק של רבינוביץ'

הטריק של רבינוביץ' הוא הוכחה עבור הגרסה המקורית של משפט האפסים של הילברט מתוך הגרסה החלשה - שורת סתירה[1].

יהי K שדה סגור אלגברית, יהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I \triangleleft K[x_1,\ldots,x_n]} אידאל ויהי g פולינום המתאפס בכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x \in V(I)} . ממשפט הבסיס של הילברט, קיימים כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I = \langle f_1,\ldots,f_m \rangle} . נרצה להראות כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g \in \sqrt{I}} . אם g = 0, אזי התנאי מתקיים. אחרת, נוסיף משתנה חדש y, ונשים לב שלפולינומים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m,1 - y\cdot g} , אין שורש משותף. זאת אומרת, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(\langle f_1,\ldots,f_m,1 - y\cdot g\rangle) = \phi} . ממשפט האפסים החלש, נקבל כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \langle f_1,\ldots,f_m,1 - y \cdot g\rangle = K[x_1,\ldots,x_n,y]} , ובפרט,הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ,~1 = h_0(x_1,\ldots,x_n,y)\cdot (y\cdot g(x_1,\ldots,x_n) - 1) + \sum_{i=1}^n h_i(x_1,\ldots,x_n,y)\cdot f_i(x_1,\ldots,x_n)} עבור פולינומים הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle h_{0},\ldots ,h_{m}\in K[x_{1},\ldots ,x_{n},y]} כלשהם. נתבונן בשוויון המתקבל בחוג המנה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R = K[x_1,\ldots,x_n,y] / \langle 1 - y\cdot g \rangle} . כיוון שבחוג זה y = 1/g, נקבל כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle .~1 = \sum_{i=1}^{n} h_i(x_1,\ldots,x_n,1/g) \cdot f_i(x_1,\ldots,x_n)} כיוון שבביטוי שבאגף ימין רק g מופיע במכנה, אזי עבור r טבעי ופולינומים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_1,\ldots,p_m \in K[x_1,\ldots,x_n]} כלשהם מתקיים

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ,~1 = \frac{\sum_{i = 1}^m p_i(x_1,\ldots,x_n) \cdot f_i(x_1,\ldots,x_n)}{ g(x_1,\ldots,x_n)^{r}}} ולכן בחוג R, . זאת אומרת, קיים פולינום הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q \in K[x_1,\ldots,x_n,y]} , כך שמתקיים השוויוןהפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle .~g(x_1,\ldots,x_n)^{r} = \sum_{i = 1}^m p_i(x_1,\ldots,x_n) \cdot f_i(x_1,\ldots,x_n) + q(x_1,\ldots,x_n,y) \cdot (1 - y\cdot g(x_1,\ldots,x_n))} כיוון שבאגף שמאל, המקדם של המשתנה y הוא אפס, אזי q = 0, ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\textstyle g^{r} = \sum_{i = 1}^m p_i \cdot f_i } . זאת אומרת, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g \in \sqrt{I}} , כרצוי.

מסקנות

שוויון רדיקלים

אחת מהמסקנות הנובעות ממשפט האפסים של הליברט היא כי רדיקל ג'ייקובסון של אלגברה נוצרת סופית שווה לרדיקל הנילפוטנטי. רדיקל ג'ייקובסון של אלגברה A, אשר מסומן על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J(A)} , או לעיתים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle radJ(A)} , מוגדר להיות החיתוך של כל האידאליים המקסימליים ב-A. לעומת זאת, הרדיקל הנילפוטנטי, אשר מסומן על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle nil(A)} , או הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle radN(A)} , מוגדר כחיתוך של כל האידאליים הראשוניים ב-A. כיוון שכל אידאל מקסימלי הוא גם אידאל ראשוני, אזי רדיקל ג'ייקובסון תמיד מוכל ברדיקל הנילפוטנטי. המסקנה מראה כי אם האלגברה A נוצרת סופית, אזי למעשה יש שוויון.

שדות סופיים

על אף שמשפט האפסים של הילברט מנוסח עבור שדות סגורים אלגברית, ובפרט אינסופיים, ניתן להסיק ממנו את הגרסה הבאה עבור שדות סופיים[2]:

משפט - יהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m \in \mathbb{Z}[x_1,\ldots,x_n]} פולינומים, אזי קיים להם שורש משותף בשדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{C}} , אם ורק אם קיים פתרון בשדה סופי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}} ממאפיין p, עבור כמעט כל ראשוני p.

המשפט מקשר, בצורה אשר אינה משתמעת באופן מידי, בין שדות ממאפיין אפס לכאלו עם מאפיין חיובי.

קישור בין משפחות של אידאלים לעצמים גאומטריים

ממשפט זה אפשר להסיק את ההתאמות הבאות, בין משפחות אידאלים של חוגי פולינומים לבין עצמים גאומטריים:

  • אידאל רדיקלי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} יריעה אלגברית אפינית (קבוצה סגורה בטופולוגית זריצקי)
  • אידאל ראשוני הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} יריעה אלגברית אפינית אי-פריקה
  • אידאל מקסימלי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} נקודה במרחב האפיני

התאמות אלו הן הבסיס לגאומטריה האלגברית הקלאסית. בגאומטריה האלגברית המודרנית, התאמות אלו מוכללות להתאמה החשובה הבאה:

אידאל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} סכמה אפינית

כלומר, יש התאמה מלאה בין אידאלים של חוג הפולינומים לבין סכמות אפיניות.

הוכחה

למשפט האפסים יש הוכחות רבות, מתוכן נציין שתי הוכחות. הראשונה היא עבור שדות גדולים, והיא קצרה יחסית; השנייה מוכיחה את המקרה הכללי ומופיעה בהמשך. בשתי ההוכחות, נוכיח את משפט האפסים של הילברט על ידי כך שנוכיח את הגרסה החלשה - פתרון למערכות פולינומים בהרחבת שדות. ניתן להסיק את הגרסה המלאה בהינתן החלשה על ידי הטריק של רבינוביץ' אשר מנוסח למעלה. שתי ההוכחות מתבססות הטיעון הבא:

יהיה K שדה ויהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m \in K[x_1,\ldots,x_n]} פולינומים. נניח כי קיימת הרחבת שדות L/K, כך שקיימים איברים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_1,\ldots,y_n \in L} , עבורם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(y_1,\ldots,y_n) = 0} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} . נסמן ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \overline{K}} את הסגור האלגברי של K. מספיק להראות שקיים פתרון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_1,\ldots,x_n \in \overline{K}} , כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(x_1,\ldots,x_n) = 0} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} . אכן, אם ישנו כזה פתרון, אזי קיים פתרון בשדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K' = K\langle x_1,\ldots,x_n\rangle} , ובנוסף ההרחבה K'/K סופית, כיוון שהאיברים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_1,\ldots,x_n} אלגבריים מעל K. לכן, נניח מעתה שהשדה K סגור אלגברית.

הוכחה עבור שדות גדולים

נוכיח תחילה עבור המקרה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left| K \right| > \aleph_0} , שלו יש הוכחות קצרות רבות. נציג כאן את אחת מהן: נסמן ב- את מקדמי הפולינום הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} . מתקיים שישנו פתרון למערכת המשוואות בשדה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L':=\mathbb{Q}\langle a_{1,1},\ldots,a_{n,\ell_n},y_1,\ldots,y_n \rangle \subset L} . כיוון ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |K| > |L'|} , וכיוון שהשדה K סגור אלגברית, ניתן לשכן את 'L ב-K ולכן קיים פתרון ב-K.

הוכחה עבור המקרה הכללי

נוכיח עתה את המקרה הכללי. נניח, בלי הגבלת הכלליות, כי ההרחבה L/K היא נוצרת סופית, אחרת נבחר את ההרחבה הנוצרת סופית הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \widetilde{L} := K\langle y_1,\ldots,y_n \rangle / K} , אשר מכילה גם היא פתרון. נסדר את איברי הפתרון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_1,\ldots,y_n} כך שיתקיים התנאי הבא: האיבר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_1} טרנסצנדנטי מעל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K} , האיבר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_2} טרנסצנדנטי מעל , ובאופן כללי האיבר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_i} טרנסצנדנטי מעל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K\langle y_1,\ldots,y_{i-1} \rangle} לכל , עבור הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq k \leq n} . יתר האיברים, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_{k+1},\ldots,y_n} , הם אלגבריים מעל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K\langle y_1,\ldots,y_k \rangle} . נסמן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L' := K\langle y_1,\ldots,y_k \rangle } ונשים לב כי ההרחבה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L/L'} היא סופית, מאופן בחירת k. כיוון ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_i} טרנסצנדנטי מעל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K\langle y_1,\ldots,y_{i-1} \rangle} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq k} , אזי מתקיים כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L' = K\left( y_1,\ldots,y_k \right)} , זאת אומרת, L' הוא שדה הפונקציות הרציונליות עם k איברים ומקדמים ב-K.

יהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e_1, \ldots, e_\ell \in L} בסיס ל-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L/L'} ונניח נניח כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e_1 = 1} , אחרת נוסיף אותו לבסיס. יהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \{a_{i,j,h}\}_{i,j,h=1}^{\ell,\ell,\ell},\{b_{i,h}\}_{i,h=1}^{n,\ell}\subset L'} איברים כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e_i \cdot e_j = \sum_{h = 1}^\ell a_{i,j,h} \cdot e_h} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i,j \leq \ell} , ו-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_i = \sum_{h = 1}^\ell b_{i,h} \cdot e_h} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq n} .בחירה זאת מאפשרת לנו להציג את המשוואות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(y_1,\ldots,y_n) = 0} כמנה של פונקציות לינאריות באיברי הבסיס עם מקדמים ב-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle K\langle \{a_{i,j,h}\}_{i,j,h=1}^{\ell,\ell,\ell},\{b_{i,h}\}_{i,h=1}^{n,\ell} \rangle} . נרצה למצוא איברים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha_1,\ldots,\alpha_k \in K} אשר לא יאפסו את המכנה. כדי לעשות זאת, נבחר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0 \neq p \in K[x_1,\ldots,x_k]} ככה שכל האפסים של המכנה יהיו אפסים של הפולינום הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} ונבחר הפענוח נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \alpha _{1},\ldots ,\alpha _{k}\in K} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(\alpha_1,\ldots,\alpha_k) \neq 0} . בצורה פורמלית, נבחר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0 \neq p \in K[x_1,\ldots,x_k]} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p\cdot a_{i,j,h} \in K[x_1,\ldots,x_k]} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1\leq i,j,h \leq \ell} ו- לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1\leq i \leq n} ולכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq h \leq \ell} . כיוון ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p \neq 0} , אזי קיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha = (\alpha_1,\ldots,\alpha_k) \in K^k} כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(\alpha) \neq 0} . מתקבל כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y_i(\alpha) \in K} , ובפרט הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(y_1(\alpha),\ldots,y_n(\alpha)) = 0} , לכל .

נגדיר K-אלגברה A באופן הבא: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A = K^\ell } מוגדרת על ידי הבסיס הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g_1,\ldots,g_\ell \in A} כך שמתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g_i \cdot g_j = \sum_{h=1}^\ell a_{i,j,k}(\alpha) \cdot g_k} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i,j \leq \ell} . במילים אחרות, A היא האלגברה הנוצרת על ידי הצבת הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \alpha} בבסיס e. נגדיר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle z_1,\ldots,z_n \in A} על ידי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle z_i = \sum_{h=1}^\ell b_{i,h}(\alpha)\cdot g_h} . באופן זה מתקיים כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(z_1,\ldots,z_n) = 0 \in A} לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} . לבסוף, יהיה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathfrak{m} \triangleleft A} אידאל מקסימלי ולכן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A/\mathfrak{m}} הוא שדה. בנוסף הוא הרחבה סופית של K. כיוון ש-K סגור אלגברית, אזי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A/\mathfrak{m}= K} . נסמן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_i = \bar{z}_i \in K} ההטלה לשדה המנה, לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq n} , ונקבל כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_i(x_1,\ldots,x_n) = 0 } לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq m} . זאת אומרת, הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_1,\ldots,x_n \in K } הוא פתרון למערכת הפולינומים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_1,\ldots,f_m } , כרצוי.

גרסה פרויקטיבית

בגאומטריה פרויקטיבית ניתן לנסח משפט מקביל אך מעט שונה.

ראשית, במקרה הפרויקטיבי יריעה פרויקטיבית היא אוסף פתרונות של פולינומים מאידאל הומוגני הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J} (אידאל שלכל איבר בו, גם החלקים המונומיים שלו שייכים אליו), אותה נסמן גם כן .

בכיוון ההפוך, כל תת-קבוצה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle X} במרחב פרויקטיבי שולחים לאידאל שנוצר על ידי הפולינום ההומוגניים שמאפסים את כל הנקודות בה, אותו נסמן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I(X)} .

נקבל טענה דומה לגרסה החלשה על שורת סתירה כלעיל:

משפט - עבור אידאל הומוגני הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J} , מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(J)=\phi} אם ורק אם הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J} מכיל אידאל הומוגני הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_s} , בו כל מונום של כל פולינום הוא ממעלה הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s} לפחות.

וכעת נקבל את ההתאמה:

משפט האפסים בגרסה הפרויקטיבית- לכל אידאל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J} עבורו מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(J) \neq \phi} (כלומר הוא לא מכיל אידאל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle J_s} כנ"ל), מתקיים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle I(V(J))=Rad(J)} .

תוצאות קשורות

למשפט האפסים של הילברט יש מספר תוצאות דומות מתחומים שונים במתמטיקה. נציין כאן כמה מהן.

משפט האפסים הקומבינטורי

משפט בקומבינטוריקה, המוכר בשם "משפט האפסים הקומבינטורי", משמש להוכחת תוצאות שונות מתורת המספרים האדיטיבית, תורת הגרפים וקומבינטוריקה, ומנוסח כלהלן: יהיה K שדה ויהי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f \in K[x_1,\ldots,x_n]} פולינום ממעלה d. יהיו הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_1,\ldots,t_n > 0} שלמים כך שהמקדם של המונום הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n x_i^{t_i}} ב-f אינו אפס, וכן כי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^d t_i = d} . אזי, לכל תתי קבוצות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S_1,\ldots,S_n \subset K} המקיימות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left| S_i \right| > t_i} , לכל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 \leq i \leq n} , קיימים , כך ש-הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(s_1,\ldots,s_n) \neq 0} .

השימוש במשפט מוכר לעיתים גם כשיטה הפולינומית שמקורה במאמר של נוגה אלון ומיכאל טרסי[3]. השיטה פותחה לאחר מכן על ידי אלון, נתנסון ורוזה בשנים 1996-1995[4] ונוסחה מחדש על ידי אלון בשנת 1999[5]. המשפט קיבל את שמו כיוון שניתן לראות בו כמקרה פרטי של משפט האפסים של הילברט. דוגמאות לשימושים של המשפט הן הוכחות פשוטות למשפט שבלי-וורנינג על אפסים של מערכות של פולינומים, ומשפט קושי-דוונפורט בקומבינטוריקה אדיטיבית.

משפט גלפנד מזור

באנליזה פונקציונלית, משפט גלפנד מזור, הקרוי על שם המתמטיקאיים ישראל גלפנד וסטניסלב מזור, הוא המשפט הבא: תהי A אלגברת בנך מרוכבת עם יחידה וחלוקה. אזי A איזומטרית לשדה המספרים המרוכבים. במילים אחרות, שדה המספרים המרוכבים הוא האלגברת בנך המרוכבת היחידה בה כל איבר לא אפס הוא הפיך, כאשר היחידות היא עד כדי איזומטריה.

לקריאה נוספת

  • David Eisenbud, Commutative Algebra With a View Toward Algebraic Geometry, New York: Springer-Verlag, 1999.


הערות שוליים

  1. ^ J. L. Rabinowitsch, Zum Hilbertschen Nullstellensatz, Mathematische Annalen 102, עמ' 520–520 doi: 10.1007/BF01782361
  2. ^ Jean-Pierre Serre, How to use finite fields for problems concerning infinite fields, arXiv:0903.0517 [math], 2009-03-03
  3. ^ N. Alon, M. Tarsi, A nowhere-zero point in linear mappings, Combinatorica 9, עמ' 393–395 doi: 10.1007/BF02125351
  4. ^ Noga Alon, Melvyn B. Nathanson, Imre Ruzsa, The Polynomial Method and Restricted Sums of Congruence Classes, Journal of Number Theory 56, 1996-02-01, עמ' 404–417 doi: 10.1006/jnth.1996.0029
  5. ^ Noga Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8, 1999-01-01, עמ' 7–29
סמל המכלול גמרא 2.PNG
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0