משפט ההתמדה של סילבסטר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באלגברה לינארית, משפט ההתמדה של סילבסטר קובע שסימנם של המקדמים בתבנית ריבועית אלכסונית מעל הממשיים אינו תלוי בבסיס שבו היא מתוארת. מבחינה גאומטרית, המשפט מתבטא בכך שהטיפוס של צורה המוגדרת על ידי תבנית ריבועית (כגון: אליפסה, פרבולה או היפרבולה) אינו משתנה כשמסובבים, מותחים או משקפים את המרחב שבו היא מוגדרת.

מבוא

אחד השימושים הנאים של תורת המטריצות הוא לתיאור ולטיפול בתבניות ריבועיות, שהן פונקציות כדוגמת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x,y,z)=4x^2-5y^2+z^2+8xy-2xz} . (נניח מעתה שהמאפיין של שדה הבסיס שונה מ-2). פונקציות כאלה אפשר לייצג על ידי מטריצה בצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(v)=v^{tr}Av} כאשר A היא מטריצה סימטרית, והוקטור הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v=(x,y,z)} . בייצוג כזה, החלפה לינארית של המשתנים שקולה להחלפת המטריצה A במטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P^{tr}AP} כאשר P מטריצה הפיכה.

כל מטריצה מן הצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P^{tr}AP} (כאשר P הפיכה) "חופפת" למטריצה A, והגדרה זו קובעת יחס שקילות בין מטריצות, הנקרא יחס החפיפה. לדוגמה, סידור מחדש של השורות ושל העמודות של A (באותו אופן) מהווה חפיפה, המתארת החלפת משתנים. אפשר לסכם ולומר שמטריצות המצויות באותה מחלקת חפיפה מייצגות, עקרונית, את אותה תבנית ריבועית.

אפשר להוכיח שכל מטריצה סימטרית חופפת למטריצה אלכסונית; באופן דומה, אפשר להביא כל תבנית ריבועית לצורה אלכסונית, ללא גורמים מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ xy} , שאותה קל יותר לנתח. לדוגמה, הצבת המשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x'=x+y-z/4, y'=y-z/9, z'=z} מביאה את התבנית f לצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x',y',z')=4(x')^2-9(y')^2+\frac{31}{36}(z')^2} .

כאשר נתונה תבנית אלכסונית, אפשר לבצע בה החלפת משתנים של מתיחה וכיווץ, כלומר, מן הצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\mapsto cx} . החלפה כזו מכפילה את המקדם של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2} בתבנית בסקלר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c^2} .

כאשר מדובר בתבנית שמקדמיה הם מספרים ממשיים, כל מספר שקול, עד כדי ריבוע, לאחד מבין המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ +1,-1,0} , ולכן אפשר להביא את התבנית לצורה שקולה, שאלו מקדמיה. לדוגמה, את התבנית f אפשר להעביר לצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x_1,x_2,x_3)=x_1^2+x_2^2-x_3^2} . באופן דומה, כל תבנית ריבועית ממשית (בת n משתנים) שקולה לתבנית אלכסונית מן הצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1^2+\dots+x_k^2-x_{k+1}^2-\dots-x_{k+s}^2} .

משפט יעקובי מספק שיטה חישובית למציאת הצורה האלכסונית, שממנה אפשר להסיק גם על המבנה והתכונות של מטריצות חיוביות ומטריצות בעלות תכונות קרובות.

משפט סילבסטר

הצגנו הצבה המביאה את התבנית f לצורה אלכסונית שבה הסימנים הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ +,+,-} . לכאורה, ייתכן שהצבה אחרת תביא את אותה תבנית לצורה אלכסונית אחרת, שבה המקדמים הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ +,-,-} . משפט סילבסטר מבטיח שהדבר בלתי אפשרי.

משפט סילבסטר: אם f היא תבנית ריבועית ב- n משתנים מעל הממשיים, אז היא שקולה לתבנית אלכסונית אחת ויחידה מן הצורה הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ x_{1}^{2}+\dots +x_{k}^{2}-x_{k+1}^{2}-\dots -x_{k+s}^{2}} . במלים אחרות, כל מטריצה סימטרית ממשית חופפת למטריצה אלכסונית אחת ויחידה שבה אברי האלכסון הם 0, 1 או 1- (עד-כדי סדר).

המספר k+s נקרא "דרגת התבנית", והמספר k-s הוא "סימן סילבסטר של התבנית" (או של המטריצה המייצגת שלה).

שימושים בגאומטריה

חתכי חרוט, גופי הסיבוב שלהם, והכללות מממד גבוה, מתוארים כולם על ידי תבניות ריבועיות ומשוואות מן הצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x,y,z)=1} . משפט סילבסטר מראה שאפשר במקרה כזה להביא את התבנית הריבועית לצורה אלכסונית ולמיין את התבניות על-פי מספר הסימנים החיוביים והשליליים. לדוגמה: במרחב התלת-ממדי, כל משוואה הומוגנית מן הצורה הנזכרת לעיל אפשר להביא (על ידי שינוי בסיס, כלומר סיבוב, מתיחה ושיקוף) לאחת מבין הצורות הבאות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2+z^2=1} (כדור), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2-z^2=1} (היפרבולואיד חד-יריעתי), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2-y^2-z^2=1} (היפרבולואיד דו-יריעתי), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2+z^2=-1} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2=-1} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2=-1} (קבוצה ריקה), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2=1} (גליל), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2-y^2=1} (יריעה היפרבולית לא קשירה), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2=1} (זוג מישורים מקבילים), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2+z^2=0} (נקודה), (חרוט כפול), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+y^2=0} (ישר), הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2=0} (מישור) או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2-y^2=0} (זוג מישורים נחתכים).

במעט יותר מאמץ אפשר לטפל גם ביריעות ריבועיות לא הומוגניות, כדוגמת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^2+2yz+4z=1} . בדרך כלל, הזזה של המרחב מאפשרת להביא את היריעה המתוארת על ידי משוואה לא הומוגנית, לצורה הומוגנית.

הוכחת המשפט

נניח ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A,A'} שתי מטריצות אלכסוניות מעל הממשיים, ושהן חופפות זו לזו, כלומר, קיימת מטריצה הפיכה T כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A' = T^{tr} A T} . אפשר להניח שאברי האלכסון בכל אחת מן המטריצות מסודרים - החיוביים קודמים לכל האחרים. נסמן ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k,k'} את מספר המקדמים החיוביים בשני האלכסונים. מנקודת המבט של תבניות ריבועיות, אפשר לנסח הנחה זו כך: קיים בסיס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_1,\dots,v_n} כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_i^{tr}A v_i>0} עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i\leq k} , ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_i^{tr} A v_i \leq 0} אחרת; וכך גם עבור , בשינויים המתחייבים.

נסמן ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P} את המרחב הנפרש על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_1,\dots,v_k} , וב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ,N} את המרחב הנפרש על ידי n-k הווקטורים האחרים בבסיס המתאים ל- A. באופן דומה, נגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P',N'} עבור המטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A'} . קל לראות שכל וקטור שונה מאפס במרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P} מקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^{tr}Ax>0} , בעוד שלכל וקטור במרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N'} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^{tr}T^{tr}ATx=x^{tr}A'x\leq 0} . לכן, לכל וקטור y במרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T(N')} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ y^{tr}Ay\leq 0} . הוכחנו שהמרחבים מוכרחים להיחתך טריוויאלית: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P\cap T(N')} . לכן סכומם הוא סכום ישר, והממדים מקיימים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n-\dim(N)+\dim(N') = \dim(P)+\dim(N') = \dim(P+N') \leq n} ; לכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n-k=\dim(N) \geq \dim(N')=n-k'} . אבל טענה זו נכונה גם בחילופי התפקידים, ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k=k'} . באופן דומה גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ s=s'} .

ראו גם