השורש הריבועי של 2

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
השורש הריבועי של 2 הוא אורכו של היתר במשולש ישר-זווית ושווה-שוקיים שאורך ניצביו הוא 1

השורש הריבועי של 2, ידוע גם כקבוע פיתגורס, לרוב מסומן הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2} , הוא המספר הממשי החיובי שכאשר יוכפל בעצמו, תהיה התוצאה שווה ל-2. זהו ככל הנראה המספר האי-רציונלי הידוע הראשון[1]. השורש הריבועי של 2, מעוגל ל-50 הספרות הראשונות הוא:[2]

37695 71875 85696 69807 24209 16887 04880 73095 35623 1.41421

על-פי משפט פיתגורס, השורש הריבועי של 2 הוא אורך האלכסון בריבוע שאורך צלעותיו הוא 1.

הקירוב בשברים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \tfrac{99}{70}} עבור שורש 2 מדויק עד לספרה הרביעית אחרי הנקודה העשרונית.

המספר נקרא לפעמים "יחס הכסף".

היסטוריה

קובץ:Ybc7289-bw.jpg
תבליט נחושת בבלי (המתאורך ל-1800 עד 1600 לפה"ס) עם הסברים

תבליט נחושת בבלי (המתוארך ל-1800 עד 1600 לפנה"ס)[3] נותן קירוב של בדיוק של ארבע ספרות סקסגסימליות שהן כשש ספרות עשרוניות:

אזכור קדום נוסף של בקירוב מופיע במסמך הודי עתיק הנקרא "שולבא-סוטרא": "הגדילו את אורך הצלע בשליש ממנה, הוסיפו רבע מן השליש שלה והפחיתו אחד חלקי שלושים וארבע של הרבע שהוספתם" – כלומר:

הקירוב ההודי העתיק הוא למעשה המספר השביעי בסדרת פל, והמספרים הבאים בסדרת פל משמשים לקירוב יותר מדויק של השורש הריבועי של 2.

גילוי המספרים האי-רציונליים מיוחס להיפאסוס, מחברי האסכולה הפיתגוראית, שמצא הוכחה שהשורש הריבועי של 2 הוא מספר אי-רציונלי. אולם, דבר הגילוי נשמר בסוד על-מנת שלא לסתור את טענת האסכולה הפיתגוראית שהעולם כולו ניתן לתיאור כיחסים בין מספרים טבעיים, והיפאסוס סולק מן האסכולה הפיתגוראית (ולפי גרסאות אחרות הוטבע על ידי פיתגורס ותלמידיו). עם זאת, אין לסיפור זה סימוכין.

חוקרים בני זמננו סבורים כי גילויים של המספרים האי-רציונלים, לא זעזע את עולמו של פיתגורס. הם מסבירים שהמקור לאגדה זו הוא שהיוונים בתקופתו של פיתגורס, השתמשו באותה מילה כדי לתאר מספרים אי-רציונלים וכדי לתאר תופעה "לא-רציונלית" – תופעה שהיא בבחינת "לא תיאמן". קיומם של מספרים אי-רציונליים מוזכר לראשונה אצל אפלטון, יותר ממאה שנים לאחר מות פיתגורס.

דרכים לחישוב 2√

ישנן דרכים רבות לחישוב השורש הריבועי של 2 – ניתן להיעזר בשיטות למציאת שורש ריבועי, שהשיטה הבבלית היא אחת מהן. שיטה נוספת היא להיעזר בסדרת פל – ככל שנתקדם בחישוב איברים נוספים של הסדרה נקבל ערך מדויק יותר של השורש הריבועי של 2. למעשה, ניתן לבטא זאת באמצעות שבר משולב:

מן השבר הזה מתקבלת סדרה של קירובים בשברים: .

בשנת 1996 חושב הערך של השורש הריבועי של 2 עד כדי 137,438,953,444 (כ-137.4 מיליארד) ספרות לאחר הנקודה, על ידי מתמטיקאי יפני, יאסומסה קאנאדה. בשנת 2006 נשבר השיא של חישוב ספרות לאחר הנקודה של השורש הריבועי של 2 והגיע ל-200 מיליארד ספרות לאחר הנקודה; החישוב, במחשב אישי, נמשך 13 ימים ו-14 שעות.

למעשה, בין הקבועים המתמטיים האי-רציונליים, רק הקירוב של פאי חושב יותר ספרות לאחר הנקודה.

הוכחת אי-רציונליות

ישנן הוכחות רבות לאי-רציונליות של שורש 2. ההוכחה המפורסמת ביותר ניתנה על ידי אוקלידס והיא ניתנת כאן:

נניח בשלילה כי קיימים מספרים טבעיים זרים עבורם:

  1. . אז ולכן זוגי.
  2. כיוון שהעלאת מספר אי-זוגי בריבוע נותנת מספר אי-זוגי, גם זוגי, ולכן כאשר מספר טבעי. נציב ונקבל הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (2k)^2=2n^2} , כלומר .
  3. באותו אופן גם זוגי, ולכן זוגי – בסתירה להנחה ש- זרים. לכן אין ל-2 שורש רציונלי.

הוכחה לא בונה

שורש 2 משמש תפקיד מרכזי בדוגמה מפורסמת להוכחה לא בונה[4] (הוכחה המראה קיומו של עצם מבלי להראות כיצד ניתן להשיגו). ההוכחה מראה קיום מספר אי-רציונלי בחזקת מספר אי-רציונלי הנותן תוצאה רציונלית. נתבונן בשורש 2 בחזקת שורש 2, כלומר: הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2^\sqrt{2}} . אם הוא רציונלי, מצאנו. אחרת, נעלה מספר זה בחזקת שורש 2 ונקבל את התוצאה הרציונלית 2.

בזכות משפט גלפונד-שניידר ידוע כי במקרה הזה מספר טרנסצנדנטי ולכן גם אי-רציונלי.

תכונות

השורש הריבועי של 2 הוא מספר אלגברי, ויתר על כן, הוא שלם אלגברי, שכן הוא שורש של הפולינום המתוקן .

הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2} בחזקת עצמו אינסוף פעמים שווה ל-2 (ראו מגדל חזקות).

שימושים

לגליונות נייר בתקן ISO 216 יחס של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2} בין אורכי צלעותיהם. כך יחס הצלעות נשמר בקיפול מדויק של הגיליון לשניים. לדוגמה, מידות דף A4 הן 210 על 297 מילימטרים – יחס מדויק עד הספרה הרביעית אחרי הנקודה העשרונית. סדרות הגליונות בתקן זה מוגדרות כך שכל דף קצר פי במידות האורך מקודמו בסדרה (A4 קצר פי הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt2} מ-A3), וכך תוצאת קיפול או חיתוך גיליון לשניים מתקבלת במידותיו של הגיליון הבא בסדרה.

הערות שוליים

Logo hamichlol.png
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0
  1. ^ יש טוענים שהמספר הראשון הוא יחס הזהב,ראה הפנטגרמה והפיתגוראים. באתר "לא מדויק"
  2. ^ את מיליון הספרות הראשונות ניתן למצוא באתר של Robert J. Nemiroff.
  3. ^ YBC7289 באוסף אוניברסיטת ייל
  4. ^ Jarden, D., Curiosa No. 339, Scripta Mathematica 19 (1953), p.229 (באנגלית)