מסילה (מתמטיקה)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
תמונת מסילה במישור

בטופולוגיה, מסילה היא פונקציה רציפה מקטע ממשי כלשהו (לרוב מתייחסים לקטע היחידה) למרחב טופולוגי. מסילות מאפשרות ללמוד את המבנה הפנימי של המרחב המדובר, למשל, על ידי חקירת מרכיבי קשירות מסילתית, או על ידי מבנים של מסילות, כדוגמת החבורה היסודית. מסילות מאפשרות גם לחקור שינוי רציף של מרחב אחד למשנהו, תחום שבו מטפלת תורת ההומוטופיות. בפיזיקה, אפשר לחשב פרמטרים של תנועה לאורך מסילה באמצעות אינטגרלים מסילתיים, שלהם תפקיד חשוב גם באנליזה מרוכבת.

שְמן מגיע מן העובדה, שניתן לחשוב על מסילות אל המרחב האוקלידי כמסלולי טיול רציפים במרחב; אל הנקודות בקטע המקור מתייחסים כמייצגות זמן והנקודות על תמונת המסילה מייצגות את המיקום במרחב בזמן הנתון.

למשל, המסילה , המוגדרת לפי ההתאמה: היא מסילה המייצגת טיול סביב מעגל היחידה במישור, כשבזמן נמצאים בזווית רדיאנים ביחס לציר .

מסילה, שתחומה הוא מרחב נורמי נקראת מסילה דיפרנציאבילית, אם היא גזירה ברציפות בכל הקטע; מסילה דיפרנציאבילית למקוטעין היא מסילה הגזירה ברציפות בכל הקטע, למעט מספר סופי של נקודות.

מסילה סגורה היא מסילה שנקודות הקצה שלה שוות זו לזו, כלומר: . מסילה שאינה "מבקרת" פעמיים באותה נקודה (פרט אולי לנקודות הקצה), כלומר היא אינה חותכת עצמה, נקראת מסילה פשוטה.

באנליזה מרוכבת, יש חשיבות למספר הפעמים שמסילה נתונה במישור המרוכב מקיפה נקודה שאיננה על המסילה. מספר זה נקרא האינדקס של המסילה ביחס לנקודה, והוא מוגדר על־פי הנוסחה:

המחזירה מספר שלם עבור כל מסילה דיפרנציאבילית וסגורה. אם המסילה נעה נגד כיוון השעון, האינדקס יהיה חיובי, בעוד שהאינדקס של המסילה ההפוכה: , יהיה שלילי.

שרשור מסילות הוא יצירת מסילה חדשה משתי מסילות קיימות. למשל, אם קיימות שתי מסילות:

כאשר ראש המסילה השנייה (נקודת הקצה) מתלכד עם זנבה של הראשונה (), שרשור המסילות יהיה מסילה חדשה – שתחומה , המעניקה את הערכים עבור , ואת הערכים עבור .

ראו גם