חוג השלמים של אייזנשטיין

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, חוג השלמים של אייזנשטיין הוא החוג כאשר הוא שורש שלישי פרימיטיבי של היחידה. אברי החוג, הנקראים מספרי אייזנשטיין (ולפעמים מספרי אוילר), מרכיבים סריג משולשי במישור המרוכב, בדומה לשלמים של גאוס, היוצרים סריג ריבועי. השלמים של אייזנשטיין מופיעים בהוכחה של לנדאו למקרה n=3 במשפט האחרון של פרמה[1], שאותו הוכיחו אוילר ולז'נדר באופן ישיר יותר.

חוג השלמים של אייזנשטיין הוא תחום שלמות אוקלידי, שהוא חוג השלמים של שדה המספרים הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Q}[\sqrt{-3}]} . את פעולת הכפל אפשר לחשב מן הזהות הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \omega^2 +\omega +1=0} . הנורמה של מספרי אייזנשטיין היא הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N(a+b\omega) = (a+b\omega)(b+b\omega^{-1}) = a^2-ab+b^2} . בחוג הזה יש ששה אברים הפיכים: החזקות של הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ - \omega} .

הראשוניים של אייזנשטיין

הראשוניים בחוג השלמים של אייזנשטיין שייכים לשלוש קבוצות: (1) ראשוניים טבעיים השקולים ל-2 מודולו 3; (1) המספר הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ 1-\omega} , שהנורמה שלו היא 3; (3) מספרי אייזנשטיין בעלי נורמה ראשונית השקולה ל-1 מודולו 3 (כגון הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3+2\omega} שהנורמה שלו 7, או הפענוח נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3-2\omega} שהנורמה שלו 19).

הערות שוליים

  1. ^ Hardy and Wright, "An Introduction to the Theory of Numbers", notes to Chapter XIII.4


P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.